Umesh Krishnaswamy | 345ee99 | 2012-12-13 20:29:48 -0800 | [diff] [blame] | 1 | package net.floodlightcontroller.topology; |
| 2 | |
| 3 | import java.util.ArrayList; |
| 4 | import java.util.HashMap; |
| 5 | import java.util.HashSet; |
| 6 | import java.util.Iterator; |
| 7 | import java.util.LinkedList; |
| 8 | import java.util.List; |
| 9 | import java.util.Map; |
| 10 | import java.util.PriorityQueue; |
| 11 | import java.util.Set; |
| 12 | |
| 13 | |
| 14 | import org.slf4j.Logger; |
| 15 | import org.slf4j.LoggerFactory; |
| 16 | |
| 17 | import net.floodlightcontroller.util.ClusterDFS; |
| 18 | import net.floodlightcontroller.core.annotations.LogMessageCategory; |
| 19 | import net.floodlightcontroller.core.annotations.LogMessageDoc; |
| 20 | import net.floodlightcontroller.routing.BroadcastTree; |
| 21 | import net.floodlightcontroller.routing.Link; |
| 22 | import net.floodlightcontroller.routing.Route; |
| 23 | import net.floodlightcontroller.routing.RouteId; |
| 24 | import net.floodlightcontroller.util.LRUHashMap; |
| 25 | |
| 26 | /** |
| 27 | * A representation of a network topology. Used internally by |
| 28 | * {@link TopologyManager} |
| 29 | */ |
| 30 | @LogMessageCategory("Network Topology") |
| 31 | public class TopologyInstance { |
| 32 | |
| 33 | public static final short LT_SH_LINK = 1; |
| 34 | public static final short LT_BD_LINK = 2; |
| 35 | public static final short LT_TUNNEL = 3; |
| 36 | |
| 37 | public static final int MAX_LINK_WEIGHT = 10000; |
| 38 | public static final int MAX_PATH_WEIGHT = Integer.MAX_VALUE - MAX_LINK_WEIGHT - 1; |
| 39 | public static final int PATH_CACHE_SIZE = 1000; |
| 40 | |
| 41 | protected static Logger log = LoggerFactory.getLogger(TopologyInstance.class); |
| 42 | |
| 43 | protected Map<Long, Set<Short>> switchPorts; // Set of ports for each switch |
| 44 | /** Set of switch ports that are marked as blocked. A set of blocked |
| 45 | * switch ports may be provided at the time of instantiation. In addition, |
| 46 | * we may add additional ports to this set. |
| 47 | */ |
| 48 | protected Set<NodePortTuple> blockedPorts; |
| 49 | protected Map<NodePortTuple, Set<Link>> switchPortLinks; // Set of links organized by node port tuple |
| 50 | /** Set of links that are blocked. */ |
| 51 | protected Set<Link> blockedLinks; |
| 52 | |
| 53 | protected Set<Long> switches; |
| 54 | protected Set<NodePortTuple> broadcastDomainPorts; |
| 55 | protected Set<NodePortTuple> tunnelPorts; |
| 56 | |
| 57 | protected Set<Cluster> clusters; // set of openflow domains |
| 58 | protected Map<Long, Cluster> switchClusterMap; // switch to OF domain map |
| 59 | |
| 60 | // States for routing |
| 61 | protected Map<Long, BroadcastTree> destinationRootedTrees; |
| 62 | protected Map<Long, Set<NodePortTuple>> clusterBroadcastNodePorts; |
| 63 | protected Map<Long, BroadcastTree> clusterBroadcastTrees; |
| 64 | protected LRUHashMap<RouteId, Route> pathcache; |
| 65 | |
| 66 | public TopologyInstance() { |
| 67 | this.switches = new HashSet<Long>(); |
| 68 | this.switchPorts = new HashMap<Long, Set<Short>>(); |
| 69 | this.switchPortLinks = new HashMap<NodePortTuple, Set<Link>>(); |
| 70 | this.broadcastDomainPorts = new HashSet<NodePortTuple>(); |
| 71 | this.tunnelPorts = new HashSet<NodePortTuple>(); |
| 72 | this.blockedPorts = new HashSet<NodePortTuple>(); |
| 73 | this.blockedLinks = new HashSet<Link>(); |
| 74 | } |
| 75 | |
| 76 | public TopologyInstance(Map<Long, Set<Short>> switchPorts, |
| 77 | Map<NodePortTuple, Set<Link>> switchPortLinks) |
| 78 | { |
| 79 | this.switches = new HashSet<Long>(switchPorts.keySet()); |
| 80 | this.switchPorts = new HashMap<Long, Set<Short>>(switchPorts); |
| 81 | this.switchPortLinks = new HashMap<NodePortTuple, |
| 82 | Set<Link>>(switchPortLinks); |
| 83 | this.broadcastDomainPorts = new HashSet<NodePortTuple>(); |
| 84 | this.tunnelPorts = new HashSet<NodePortTuple>(); |
| 85 | this.blockedPorts = new HashSet<NodePortTuple>(); |
| 86 | this.blockedLinks = new HashSet<Link>(); |
| 87 | |
| 88 | clusters = new HashSet<Cluster>(); |
| 89 | switchClusterMap = new HashMap<Long, Cluster>(); |
| 90 | } |
| 91 | public TopologyInstance(Map<Long, Set<Short>> switchPorts, |
| 92 | Set<NodePortTuple> blockedPorts, |
| 93 | Map<NodePortTuple, Set<Link>> switchPortLinks, |
| 94 | Set<NodePortTuple> broadcastDomainPorts, |
| 95 | Set<NodePortTuple> tunnelPorts){ |
| 96 | |
| 97 | // copy these structures |
| 98 | this.switches = new HashSet<Long>(switchPorts.keySet()); |
| 99 | this.switchPorts = new HashMap<Long, Set<Short>>(); |
| 100 | for(long sw: switchPorts.keySet()) { |
| 101 | this.switchPorts.put(sw, new HashSet<Short>(switchPorts.get(sw))); |
| 102 | } |
| 103 | |
| 104 | this.blockedPorts = new HashSet<NodePortTuple>(blockedPorts); |
| 105 | this.switchPortLinks = new HashMap<NodePortTuple, Set<Link>>(); |
| 106 | for(NodePortTuple npt: switchPortLinks.keySet()) { |
| 107 | this.switchPortLinks.put(npt, |
| 108 | new HashSet<Link>(switchPortLinks.get(npt))); |
| 109 | } |
| 110 | this.broadcastDomainPorts = new HashSet<NodePortTuple>(broadcastDomainPorts); |
| 111 | this.tunnelPorts = new HashSet<NodePortTuple>(tunnelPorts); |
| 112 | |
| 113 | blockedLinks = new HashSet<Link>(); |
| 114 | clusters = new HashSet<Cluster>(); |
| 115 | switchClusterMap = new HashMap<Long, Cluster>(); |
| 116 | destinationRootedTrees = new HashMap<Long, BroadcastTree>(); |
| 117 | clusterBroadcastTrees = new HashMap<Long, BroadcastTree>(); |
| 118 | clusterBroadcastNodePorts = new HashMap<Long, Set<NodePortTuple>>(); |
| 119 | pathcache = new LRUHashMap<RouteId, Route>(PATH_CACHE_SIZE); |
| 120 | } |
| 121 | |
| 122 | public void compute() { |
| 123 | |
| 124 | // Step 1: Compute clusters ignoring broadcast domain links |
| 125 | // Create nodes for clusters in the higher level topology |
| 126 | // Must ignore blocked links. |
| 127 | identifyOpenflowDomains(); |
| 128 | |
| 129 | // Step 0: Remove all links connected to blocked ports. |
| 130 | // removeLinksOnBlockedPorts(); |
| 131 | |
| 132 | |
| 133 | // Step 1.1: Add links to clusters |
| 134 | // Avoid adding blocked links to clusters |
| 135 | addLinksToOpenflowDomains(); |
| 136 | |
| 137 | // Step 2. Compute shortest path trees in each cluster for |
| 138 | // unicast routing. The trees are rooted at the destination. |
| 139 | // Cost for tunnel links and direct links are the same. |
| 140 | calculateShortestPathTreeInClusters(); |
| 141 | |
| 142 | // Step 3. Compute broadcast tree in each cluster. |
| 143 | // Cost for tunnel links are high to discourage use of |
| 144 | // tunnel links. The cost is set to the number of nodes |
| 145 | // in the cluster + 1, to use as minimum number of |
| 146 | // clusters as possible. |
| 147 | calculateBroadcastNodePortsInClusters(); |
| 148 | |
| 149 | // Step 4. print topology. |
| 150 | // printTopology(); |
| 151 | } |
| 152 | |
| 153 | public void printTopology() { |
| 154 | log.trace("-----------------------------------------------"); |
| 155 | log.trace("Links: {}",this.switchPortLinks); |
| 156 | log.trace("broadcastDomainPorts: {}", broadcastDomainPorts); |
| 157 | log.trace("tunnelPorts: {}", tunnelPorts); |
| 158 | log.trace("clusters: {}", clusters); |
| 159 | log.trace("destinationRootedTrees: {}", destinationRootedTrees); |
| 160 | log.trace("clusterBroadcastNodePorts: {}", clusterBroadcastNodePorts); |
| 161 | log.trace("-----------------------------------------------"); |
| 162 | } |
| 163 | |
| 164 | protected void addLinksToOpenflowDomains() { |
| 165 | for(long s: switches) { |
| 166 | if (switchPorts.get(s) == null) continue; |
| 167 | for (short p: switchPorts.get(s)) { |
| 168 | NodePortTuple np = new NodePortTuple(s, p); |
| 169 | if (switchPortLinks.get(np) == null) continue; |
| 170 | if (isBroadcastDomainPort(np)) continue; |
| 171 | for(Link l: switchPortLinks.get(np)) { |
| 172 | if (isBlockedLink(l)) continue; |
| 173 | if (isBroadcastDomainLink(l)) continue; |
| 174 | Cluster c1 = switchClusterMap.get(l.getSrc()); |
| 175 | Cluster c2 = switchClusterMap.get(l.getDst()); |
| 176 | if (c1 ==c2) { |
| 177 | c1.addLink(l); |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | /** |
| 185 | * @author Srinivasan Ramasubramanian |
| 186 | * |
| 187 | * This function divides the network into clusters. Every cluster is |
| 188 | * a strongly connected component. The network may contain unidirectional |
| 189 | * links. The function calls dfsTraverse for performing depth first |
| 190 | * search and cluster formation. |
| 191 | * |
| 192 | * The computation of strongly connected components is based on |
| 193 | * Tarjan's algorithm. For more details, please see the Wikipedia |
| 194 | * link below. |
| 195 | * |
| 196 | * http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm |
| 197 | */ |
| 198 | @LogMessageDoc(level="ERROR", |
| 199 | message="No DFS object for switch {} found.", |
| 200 | explanation="The internal state of the topology module is corrupt", |
| 201 | recommendation=LogMessageDoc.REPORT_CONTROLLER_BUG) |
| 202 | public void identifyOpenflowDomains() { |
| 203 | Map<Long, ClusterDFS> dfsList = new HashMap<Long, ClusterDFS>(); |
| 204 | |
| 205 | if (switches == null) return; |
| 206 | |
| 207 | for (Long key: switches) { |
| 208 | ClusterDFS cdfs = new ClusterDFS(); |
| 209 | dfsList.put(key, cdfs); |
| 210 | } |
| 211 | Set<Long> currSet = new HashSet<Long>(); |
| 212 | |
| 213 | for (Long sw: switches) { |
| 214 | ClusterDFS cdfs = dfsList.get(sw); |
| 215 | if (cdfs == null) { |
| 216 | log.error("No DFS object for switch {} found.", sw); |
| 217 | }else if (!cdfs.isVisited()) { |
| 218 | dfsTraverse(0, 1, sw, dfsList, currSet); |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | |
| 224 | /** |
| 225 | * @author Srinivasan Ramasubramanian |
| 226 | * |
| 227 | * This algorithm computes the depth first search (DFS) traversal of the |
| 228 | * switches in the network, computes the lowpoint, and creates clusters |
| 229 | * (of strongly connected components). |
| 230 | * |
| 231 | * The computation of strongly connected components is based on |
| 232 | * Tarjan's algorithm. For more details, please see the Wikipedia |
| 233 | * link below. |
| 234 | * |
| 235 | * http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm |
| 236 | * |
| 237 | * The initialization of lowpoint and the check condition for when a |
| 238 | * cluster should be formed is modified as we do not remove switches that |
| 239 | * are already part of a cluster. |
| 240 | * |
| 241 | * A return value of -1 indicates that dfsTraverse failed somewhere in the middle |
| 242 | * of computation. This could happen when a switch is removed during the cluster |
| 243 | * computation procedure. |
| 244 | * |
| 245 | * @param parentIndex: DFS index of the parent node |
| 246 | * @param currIndex: DFS index to be assigned to a newly visited node |
| 247 | * @param currSw: ID of the current switch |
| 248 | * @param dfsList: HashMap of DFS data structure for each switch |
| 249 | * @param currSet: Set of nodes in the current cluster in formation |
| 250 | * @return long: DSF index to be used when a new node is visited |
| 251 | */ |
| 252 | |
| 253 | private long dfsTraverse (long parentIndex, long currIndex, long currSw, |
| 254 | Map<Long, ClusterDFS> dfsList, Set <Long> currSet) { |
| 255 | |
| 256 | //Get the DFS object corresponding to the current switch |
| 257 | ClusterDFS currDFS = dfsList.get(currSw); |
| 258 | // Get all the links corresponding to this switch |
| 259 | |
| 260 | |
| 261 | //Assign the DFS object with right values. |
| 262 | currDFS.setVisited(true); |
| 263 | currDFS.setDfsIndex(currIndex); |
| 264 | currDFS.setParentDFSIndex(parentIndex); |
| 265 | currIndex++; |
| 266 | |
| 267 | // Traverse the graph through every outgoing link. |
| 268 | if (switchPorts.get(currSw) != null){ |
| 269 | for(Short p: switchPorts.get(currSw)) { |
| 270 | Set<Link> lset = switchPortLinks.get(new NodePortTuple(currSw, p)); |
| 271 | if (lset == null) continue; |
| 272 | for(Link l:lset) { |
| 273 | long dstSw = l.getDst(); |
| 274 | |
| 275 | // ignore incoming links. |
| 276 | if (dstSw == currSw) continue; |
| 277 | |
| 278 | // ignore if the destination is already added to |
| 279 | // another cluster |
| 280 | if (switchClusterMap.get(dstSw) != null) continue; |
| 281 | |
| 282 | // ignore the link if it is blocked. |
| 283 | if (isBlockedLink(l)) continue; |
| 284 | |
| 285 | // ignore this link if it is in broadcast domain |
| 286 | if (isBroadcastDomainLink(l)) continue; |
| 287 | |
| 288 | // Get the DFS object corresponding to the dstSw |
| 289 | ClusterDFS dstDFS = dfsList.get(dstSw); |
| 290 | |
| 291 | if (dstDFS.getDfsIndex() < currDFS.getDfsIndex()) { |
| 292 | // could be a potential lowpoint |
| 293 | if (dstDFS.getDfsIndex() < currDFS.getLowpoint()) |
| 294 | currDFS.setLowpoint(dstDFS.getDfsIndex()); |
| 295 | |
| 296 | } else if (!dstDFS.isVisited()) { |
| 297 | // make a DFS visit |
| 298 | currIndex = dfsTraverse(currDFS.getDfsIndex(), currIndex, dstSw, |
| 299 | dfsList, currSet); |
| 300 | |
| 301 | if (currIndex < 0) return -1; |
| 302 | |
| 303 | // update lowpoint after the visit |
| 304 | if (dstDFS.getLowpoint() < currDFS.getLowpoint()) |
| 305 | currDFS.setLowpoint(dstDFS.getLowpoint()); |
| 306 | } |
| 307 | // else, it is a node already visited with a higher |
| 308 | // dfs index, just ignore. |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | // Add current node to currSet. |
| 314 | currSet.add(currSw); |
| 315 | |
| 316 | // Cluster computation. |
| 317 | // If the node's lowpoint is greater than its parent's DFS index, |
| 318 | // we need to form a new cluster with all the switches in the |
| 319 | // currSet. |
| 320 | if (currDFS.getLowpoint() > currDFS.getParentDFSIndex()) { |
| 321 | // The cluster thus far forms a strongly connected component. |
| 322 | // create a new switch cluster and the switches in the current |
| 323 | // set to the switch cluster. |
| 324 | Cluster sc = new Cluster(); |
| 325 | for(long sw: currSet){ |
| 326 | sc.add(sw); |
| 327 | switchClusterMap.put(sw, sc); |
| 328 | } |
| 329 | // delete all the nodes in the current set. |
| 330 | currSet.clear(); |
| 331 | // add the newly formed switch clusters to the cluster set. |
| 332 | clusters.add(sc); |
| 333 | } |
| 334 | |
| 335 | return currIndex; |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * Go through every link and identify it is a blocked link or not. |
| 340 | * If blocked, remove it from the switchport links and put them in the |
| 341 | * blocked link category. |
| 342 | * |
| 343 | * Note that we do not update the tunnel ports and broadcast domain |
| 344 | * port structures. We need those to still answer the question if the |
| 345 | * ports are tunnel or broadcast domain ports. |
| 346 | * |
| 347 | * If we add additional ports to blocked ports later on, we may simply |
| 348 | * call this method again to remove the links on the newly blocked ports. |
| 349 | */ |
| 350 | protected void removeLinksOnBlockedPorts() { |
| 351 | Iterator<NodePortTuple> nptIter; |
| 352 | Iterator<Link> linkIter; |
| 353 | |
| 354 | // Iterate through all the links and all the switch ports |
| 355 | // and move the links on blocked switch ports to blocked links |
| 356 | nptIter = this.switchPortLinks.keySet().iterator(); |
| 357 | while (nptIter.hasNext()) { |
| 358 | NodePortTuple npt = nptIter.next(); |
| 359 | linkIter = switchPortLinks.get(npt).iterator(); |
| 360 | while (linkIter.hasNext()) { |
| 361 | Link link = linkIter.next(); |
| 362 | if (isBlockedLink(link)) { |
| 363 | this.blockedLinks.add(link); |
| 364 | linkIter.remove(); |
| 365 | } |
| 366 | } |
| 367 | // Note that at this point, the switchport may have |
| 368 | // no links in it. We could delete the switch port, |
| 369 | // but we will leave it as is. |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | public Set<NodePortTuple> getBlockedPorts() { |
| 374 | return this.blockedPorts; |
| 375 | } |
| 376 | |
| 377 | protected Set<Link> getBlockedLinks() { |
| 378 | return this.blockedLinks; |
| 379 | } |
| 380 | |
| 381 | /** Returns true if a link has either one of its switch ports |
| 382 | * blocked. |
| 383 | * @param l |
| 384 | * @return |
| 385 | */ |
| 386 | protected boolean isBlockedLink(Link l) { |
| 387 | NodePortTuple n1 = new NodePortTuple(l.getSrc(), l.getSrcPort()); |
| 388 | NodePortTuple n2 = new NodePortTuple(l.getDst(), l.getDstPort()); |
| 389 | return (isBlockedPort(n1) || isBlockedPort(n2)); |
| 390 | } |
| 391 | |
| 392 | protected boolean isBlockedPort(NodePortTuple npt) { |
| 393 | return blockedPorts.contains(npt); |
| 394 | } |
| 395 | |
| 396 | protected boolean isTunnelPort(NodePortTuple npt) { |
| 397 | return tunnelPorts.contains(npt); |
| 398 | } |
| 399 | |
| 400 | protected boolean isTunnelLink(Link l) { |
| 401 | NodePortTuple n1 = new NodePortTuple(l.getSrc(), l.getSrcPort()); |
| 402 | NodePortTuple n2 = new NodePortTuple(l.getDst(), l.getDstPort()); |
| 403 | return (isTunnelPort(n1) || isTunnelPort(n2)); |
| 404 | } |
| 405 | |
| 406 | public boolean isBroadcastDomainLink(Link l) { |
| 407 | NodePortTuple n1 = new NodePortTuple(l.getSrc(), l.getSrcPort()); |
| 408 | NodePortTuple n2 = new NodePortTuple(l.getDst(), l.getDstPort()); |
| 409 | return (isBroadcastDomainPort(n1) || isBroadcastDomainPort(n2)); |
| 410 | } |
| 411 | |
| 412 | public boolean isBroadcastDomainPort(NodePortTuple npt) { |
| 413 | return broadcastDomainPorts.contains(npt); |
| 414 | } |
| 415 | |
| 416 | class NodeDist implements Comparable<NodeDist> { |
| 417 | private Long node; |
| 418 | public Long getNode() { |
| 419 | return node; |
| 420 | } |
| 421 | |
| 422 | private int dist; |
| 423 | public int getDist() { |
| 424 | return dist; |
| 425 | } |
| 426 | |
| 427 | public NodeDist(Long node, int dist) { |
| 428 | this.node = node; |
| 429 | this.dist = dist; |
| 430 | } |
| 431 | |
| 432 | public int compareTo(NodeDist o) { |
| 433 | if (o.dist == this.dist) { |
| 434 | return (int)(o.node - this.node); |
| 435 | } |
| 436 | return o.dist - this.dist; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | protected BroadcastTree dijkstra(Cluster c, Long root, |
| 441 | Map<Link, Integer> linkCost, |
| 442 | boolean isDstRooted) { |
| 443 | HashMap<Long, Link> nexthoplinks = new HashMap<Long, Link>(); |
| 444 | //HashMap<Long, Long> nexthopnodes = new HashMap<Long, Long>(); |
| 445 | HashMap<Long, Integer> cost = new HashMap<Long, Integer>(); |
| 446 | int w; |
| 447 | |
| 448 | for (Long node: c.links.keySet()) { |
| 449 | nexthoplinks.put(node, null); |
| 450 | //nexthopnodes.put(node, null); |
| 451 | cost.put(node, MAX_PATH_WEIGHT); |
| 452 | } |
| 453 | |
| 454 | HashMap<Long, Boolean> seen = new HashMap<Long, Boolean>(); |
| 455 | PriorityQueue<NodeDist> nodeq = new PriorityQueue<NodeDist>(); |
| 456 | nodeq.add(new NodeDist(root, 0)); |
| 457 | cost.put(root, 0); |
| 458 | while (nodeq.peek() != null) { |
| 459 | NodeDist n = nodeq.poll(); |
| 460 | Long cnode = n.getNode(); |
| 461 | int cdist = n.getDist(); |
| 462 | if (cdist >= MAX_PATH_WEIGHT) break; |
| 463 | if (seen.containsKey(cnode)) continue; |
| 464 | seen.put(cnode, true); |
| 465 | |
| 466 | for (Link link: c.links.get(cnode)) { |
| 467 | Long neighbor; |
| 468 | |
| 469 | if (isDstRooted == true) neighbor = link.getSrc(); |
| 470 | else neighbor = link.getDst(); |
| 471 | |
| 472 | // links directed toward cnode will result in this condition |
| 473 | // if (neighbor == cnode) continue; |
| 474 | |
| 475 | if (linkCost == null || linkCost.get(link)==null) w = 1; |
| 476 | else w = linkCost.get(link); |
| 477 | |
| 478 | int ndist = cdist + w; // the weight of the link, always 1 in current version of floodlight. |
| 479 | if (ndist < cost.get(neighbor)) { |
| 480 | cost.put(neighbor, ndist); |
| 481 | nexthoplinks.put(neighbor, link); |
| 482 | //nexthopnodes.put(neighbor, cnode); |
| 483 | nodeq.add(new NodeDist(neighbor, ndist)); |
| 484 | } |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | BroadcastTree ret = new BroadcastTree(nexthoplinks, cost); |
| 489 | return ret; |
| 490 | } |
| 491 | |
| 492 | protected void calculateShortestPathTreeInClusters() { |
| 493 | pathcache.clear(); |
| 494 | destinationRootedTrees.clear(); |
| 495 | |
| 496 | Map<Link, Integer> linkCost = new HashMap<Link, Integer>(); |
| 497 | int tunnel_weight = switchPorts.size() + 1; |
| 498 | |
| 499 | for(NodePortTuple npt: tunnelPorts) { |
| 500 | if (switchPortLinks.get(npt) == null) continue; |
| 501 | for(Link link: switchPortLinks.get(npt)) { |
| 502 | if (link == null) continue; |
| 503 | linkCost.put(link, tunnel_weight); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | for(Cluster c: clusters) { |
| 508 | for (Long node : c.links.keySet()) { |
| 509 | BroadcastTree tree = dijkstra(c, node, linkCost, true); |
| 510 | destinationRootedTrees.put(node, tree); |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | protected void calculateBroadcastTreeInClusters() { |
| 516 | for(Cluster c: clusters) { |
| 517 | // c.id is the smallest node that's in the cluster |
| 518 | BroadcastTree tree = destinationRootedTrees.get(c.id); |
| 519 | clusterBroadcastTrees.put(c.id, tree); |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | protected void calculateBroadcastNodePortsInClusters() { |
| 524 | |
| 525 | clusterBroadcastTrees.clear(); |
| 526 | |
| 527 | calculateBroadcastTreeInClusters(); |
| 528 | |
| 529 | for(Cluster c: clusters) { |
| 530 | // c.id is the smallest node that's in the cluster |
| 531 | BroadcastTree tree = clusterBroadcastTrees.get(c.id); |
| 532 | //log.info("Broadcast Tree {}", tree); |
| 533 | |
| 534 | Set<NodePortTuple> nptSet = new HashSet<NodePortTuple>(); |
| 535 | Map<Long, Link> links = tree.getLinks(); |
| 536 | if (links == null) continue; |
| 537 | for(long nodeId: links.keySet()) { |
| 538 | Link l = links.get(nodeId); |
| 539 | if (l == null) continue; |
| 540 | NodePortTuple npt1 = new NodePortTuple(l.getSrc(), l.getSrcPort()); |
| 541 | NodePortTuple npt2 = new NodePortTuple(l.getDst(), l.getDstPort()); |
| 542 | nptSet.add(npt1); |
| 543 | nptSet.add(npt2); |
| 544 | } |
| 545 | clusterBroadcastNodePorts.put(c.id, nptSet); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | protected Route buildroute(RouteId id, long srcId, long dstId) { |
| 550 | NodePortTuple npt; |
| 551 | |
| 552 | LinkedList<NodePortTuple> switchPorts = |
| 553 | new LinkedList<NodePortTuple>(); |
| 554 | |
| 555 | if (destinationRootedTrees == null) return null; |
| 556 | if (destinationRootedTrees.get(dstId) == null) return null; |
| 557 | |
| 558 | Map<Long, Link> nexthoplinks = |
| 559 | destinationRootedTrees.get(dstId).getLinks(); |
| 560 | |
| 561 | if (!switches.contains(srcId) || !switches.contains(dstId)) { |
| 562 | // This is a switch that is not connected to any other switch |
| 563 | // hence there was no update for links (and hence it is not |
| 564 | // in the network) |
| 565 | log.debug("buildroute: Standalone switch: {}", srcId); |
| 566 | |
| 567 | // The only possible non-null path for this case is |
| 568 | // if srcId equals dstId --- and that too is an 'empty' path [] |
| 569 | |
| 570 | } else if ((nexthoplinks!=null) && (nexthoplinks.get(srcId)!=null)) { |
| 571 | while (srcId != dstId) { |
| 572 | Link l = nexthoplinks.get(srcId); |
| 573 | |
| 574 | npt = new NodePortTuple(l.getSrc(), l.getSrcPort()); |
| 575 | switchPorts.addLast(npt); |
| 576 | npt = new NodePortTuple(l.getDst(), l.getDstPort()); |
| 577 | switchPorts.addLast(npt); |
| 578 | srcId = nexthoplinks.get(srcId).getDst(); |
| 579 | } |
| 580 | } |
| 581 | // else, no path exists, and path equals null |
| 582 | |
| 583 | Route result = null; |
| 584 | if (switchPorts != null && !switchPorts.isEmpty()) |
| 585 | result = new Route(id, switchPorts); |
| 586 | if (log.isTraceEnabled()) { |
| 587 | log.trace("buildroute: {}", result); |
| 588 | } |
| 589 | return result; |
| 590 | } |
| 591 | |
| 592 | protected int getCost(long srcId, long dstId) { |
| 593 | BroadcastTree bt = destinationRootedTrees.get(dstId); |
| 594 | if (bt == null) return -1; |
| 595 | return (bt.getCost(srcId)); |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * Getter Functions |
| 600 | */ |
| 601 | |
| 602 | protected Set<Cluster> getClusters() { |
| 603 | return clusters; |
| 604 | } |
| 605 | |
| 606 | // IRoutingEngineService interfaces |
| 607 | protected boolean routeExists(long srcId, long dstId) { |
| 608 | BroadcastTree bt = destinationRootedTrees.get(dstId); |
| 609 | if (bt == null) return false; |
| 610 | Link link = bt.getLinks().get(srcId); |
| 611 | if (link == null) return false; |
| 612 | return true; |
| 613 | } |
| 614 | |
| 615 | protected Route getRoute(long srcId, short srcPort, |
| 616 | long dstId, short dstPort) { |
| 617 | |
| 618 | |
| 619 | // Return null the route source and desitnation are the |
| 620 | // same switchports. |
| 621 | if (srcId == dstId && srcPort == dstPort) |
| 622 | return null; |
| 623 | |
| 624 | List<NodePortTuple> nptList; |
| 625 | NodePortTuple npt; |
| 626 | Route r = getRoute(srcId, dstId); |
| 627 | if (r == null && srcId != dstId) return null; |
| 628 | |
| 629 | if (r != null) { |
| 630 | nptList= new ArrayList<NodePortTuple>(r.getPath()); |
| 631 | } else { |
| 632 | nptList = new ArrayList<NodePortTuple>(); |
| 633 | } |
| 634 | npt = new NodePortTuple(srcId, srcPort); |
| 635 | nptList.add(0, npt); // add src port to the front |
| 636 | npt = new NodePortTuple(dstId, dstPort); |
| 637 | nptList.add(npt); // add dst port to the end |
| 638 | |
| 639 | RouteId id = new RouteId(srcId, dstId); |
| 640 | r = new Route(id, nptList); |
| 641 | return r; |
| 642 | } |
| 643 | |
| 644 | protected Route getRoute(long srcId, long dstId) { |
| 645 | RouteId id = new RouteId(srcId, dstId); |
| 646 | Route result = null; |
| 647 | if (pathcache.containsKey(id)) { |
| 648 | result = pathcache.get(id); |
| 649 | } else { |
| 650 | result = buildroute(id, srcId, dstId); |
| 651 | pathcache.put(id, result); |
| 652 | } |
| 653 | if (log.isTraceEnabled()) { |
| 654 | log.trace("getRoute: {} -> {}", id, result); |
| 655 | } |
| 656 | return result; |
| 657 | } |
| 658 | |
| 659 | protected BroadcastTree getBroadcastTreeForCluster(long clusterId){ |
| 660 | Cluster c = switchClusterMap.get(clusterId); |
| 661 | if (c == null) return null; |
| 662 | return clusterBroadcastTrees.get(c.id); |
| 663 | } |
| 664 | |
| 665 | // |
| 666 | // ITopologyService interface method helpers. |
| 667 | // |
| 668 | |
| 669 | protected boolean isInternalToOpenflowDomain(long switchid, short port) { |
| 670 | return !isAttachmentPointPort(switchid, port); |
| 671 | } |
| 672 | |
| 673 | public boolean isAttachmentPointPort(long switchid, short port) { |
| 674 | NodePortTuple npt = new NodePortTuple(switchid, port); |
| 675 | if (switchPortLinks.containsKey(npt)) return false; |
| 676 | return true; |
| 677 | } |
| 678 | |
| 679 | protected long getOpenflowDomainId(long switchId) { |
| 680 | Cluster c = switchClusterMap.get(switchId); |
| 681 | if (c == null) return switchId; |
| 682 | return c.getId(); |
| 683 | } |
| 684 | |
| 685 | protected long getL2DomainId(long switchId) { |
| 686 | return getOpenflowDomainId(switchId); |
| 687 | } |
| 688 | |
| 689 | protected Set<Long> getSwitchesInOpenflowDomain(long switchId) { |
| 690 | Cluster c = switchClusterMap.get(switchId); |
| 691 | if (c == null) return null; |
| 692 | return (c.getNodes()); |
| 693 | } |
| 694 | |
| 695 | protected boolean inSameOpenflowDomain(long switch1, long switch2) { |
| 696 | Cluster c1 = switchClusterMap.get(switch1); |
| 697 | Cluster c2 = switchClusterMap.get(switch2); |
| 698 | if (c1 != null && c2 != null) |
| 699 | return (c1.getId() == c2.getId()); |
| 700 | return (switch1 == switch2); |
| 701 | } |
| 702 | |
| 703 | public boolean isAllowed(long sw, short portId) { |
| 704 | return true; |
| 705 | } |
| 706 | |
| 707 | protected boolean |
| 708 | isIncomingBroadcastAllowedOnSwitchPort(long sw, short portId) { |
| 709 | if (isInternalToOpenflowDomain(sw, portId)) { |
| 710 | long clusterId = getOpenflowDomainId(sw); |
| 711 | NodePortTuple npt = new NodePortTuple(sw, portId); |
| 712 | if (clusterBroadcastNodePorts.get(clusterId).contains(npt)) |
| 713 | return true; |
| 714 | else return false; |
| 715 | } |
| 716 | return true; |
| 717 | } |
| 718 | |
| 719 | public boolean isConsistent(long oldSw, short oldPort, long newSw, |
| 720 | short newPort) { |
| 721 | if (isInternalToOpenflowDomain(newSw, newPort)) return true; |
| 722 | return (oldSw == newSw && oldPort == newPort); |
| 723 | } |
| 724 | |
| 725 | protected Set<NodePortTuple> |
| 726 | getBroadcastNodePortsInCluster(long sw) { |
| 727 | long clusterId = getOpenflowDomainId(sw); |
| 728 | return clusterBroadcastNodePorts.get(clusterId); |
| 729 | } |
| 730 | |
| 731 | public boolean inSameBroadcastDomain(long s1, short p1, long s2, short p2) { |
| 732 | return false; |
| 733 | } |
| 734 | |
| 735 | public boolean inSameL2Domain(long switch1, long switch2) { |
| 736 | return inSameOpenflowDomain(switch1, switch2); |
| 737 | } |
| 738 | |
| 739 | public NodePortTuple getOutgoingSwitchPort(long src, short srcPort, |
| 740 | long dst, short dstPort) { |
| 741 | // Use this function to redirect traffic if needed. |
| 742 | return new NodePortTuple(dst, dstPort); |
| 743 | } |
| 744 | |
| 745 | public NodePortTuple getIncomingSwitchPort(long src, short srcPort, |
| 746 | long dst, short dstPort) { |
| 747 | // Use this function to reinject traffic from a different port if needed. |
| 748 | return new NodePortTuple(src, srcPort); |
| 749 | } |
| 750 | |
| 751 | public Set<Long> getSwitches() { |
| 752 | return switches; |
| 753 | } |
| 754 | |
| 755 | public Set<Short> getPortsWithLinks(long sw) { |
| 756 | return switchPorts.get(sw); |
| 757 | } |
| 758 | |
| 759 | public Set<Short> getBroadcastPorts(long targetSw, long src, short srcPort) { |
| 760 | Set<Short> result = new HashSet<Short>(); |
| 761 | long clusterId = getOpenflowDomainId(targetSw); |
| 762 | for(NodePortTuple npt: clusterBroadcastNodePorts.get(clusterId)) { |
| 763 | if (npt.getNodeId() == targetSw) { |
| 764 | result.add(npt.getPortId()); |
| 765 | } |
| 766 | } |
| 767 | return result; |
| 768 | } |
| 769 | |
| 770 | public NodePortTuple |
| 771 | getAllowedOutgoingBroadcastPort(long src, short srcPort, long dst, |
| 772 | short dstPort) { |
| 773 | // TODO Auto-generated method stub |
| 774 | return null; |
| 775 | } |
| 776 | |
| 777 | public NodePortTuple |
| 778 | getAllowedIncomingBroadcastPort(long src, short srcPort) { |
| 779 | // TODO Auto-generated method stub |
| 780 | return null; |
| 781 | } |
| 782 | } |