blob: 80987928d2f5f05620e886edeb9d963c23ec5ce3 [file] [log] [blame]
package net.onrc.onos.core.flowprogrammer;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import net.floodlightcontroller.core.FloodlightContext;
import net.floodlightcontroller.core.IFloodlightProviderService;
import net.floodlightcontroller.core.IOFMessageListener;
import net.floodlightcontroller.core.IOFSwitch;
import net.floodlightcontroller.core.internal.OFMessageFuture;
import net.floodlightcontroller.core.module.FloodlightModuleContext;
import net.floodlightcontroller.threadpool.IThreadPoolService;
import net.floodlightcontroller.util.MACAddress;
import net.floodlightcontroller.util.OFMessageDamper;
import net.onrc.onos.core.util.FlowEntry;
import net.onrc.onos.core.util.FlowEntryAction;
import net.onrc.onos.core.util.FlowEntryAction.ActionEnqueue;
import net.onrc.onos.core.util.FlowEntryAction.ActionOutput;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetEthernetAddr;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetIPv4Addr;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetIpToS;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetTcpUdpPort;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetVlanId;
import net.onrc.onos.core.util.FlowEntryAction.ActionSetVlanPriority;
import net.onrc.onos.core.util.FlowEntryAction.ActionStripVlan;
import net.onrc.onos.core.util.FlowEntryActions;
import net.onrc.onos.core.util.FlowEntryMatch;
import net.onrc.onos.core.util.FlowEntryUserState;
import net.onrc.onos.core.util.IPv4Net;
import net.onrc.onos.core.util.Pair;
import net.onrc.onos.core.util.Port;
import org.openflow.protocol.OFBarrierReply;
import org.openflow.protocol.OFBarrierRequest;
import org.openflow.protocol.OFFlowMod;
import org.openflow.protocol.OFMatch;
import org.openflow.protocol.OFMessage;
import org.openflow.protocol.OFPacketOut;
import org.openflow.protocol.OFPort;
import org.openflow.protocol.OFType;
import org.openflow.protocol.action.OFAction;
import org.openflow.protocol.action.OFActionDataLayerDestination;
import org.openflow.protocol.action.OFActionDataLayerSource;
import org.openflow.protocol.action.OFActionEnqueue;
import org.openflow.protocol.action.OFActionNetworkLayerDestination;
import org.openflow.protocol.action.OFActionNetworkLayerSource;
import org.openflow.protocol.action.OFActionNetworkTypeOfService;
import org.openflow.protocol.action.OFActionOutput;
import org.openflow.protocol.action.OFActionStripVirtualLan;
import org.openflow.protocol.action.OFActionTransportLayerDestination;
import org.openflow.protocol.action.OFActionTransportLayerSource;
import org.openflow.protocol.action.OFActionVirtualLanIdentifier;
import org.openflow.protocol.action.OFActionVirtualLanPriorityCodePoint;
import org.openflow.protocol.factory.BasicFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* FlowPusher is a implementation of FlowPusherService.
* FlowPusher assigns one message queue instance for each one switch.
* Number of message processing threads is configurable by constructor, and
* one thread can handle multiple message queues. Each queue will be assigned to
* a thread according to hash function defined by getHash().
* Each processing thread reads messages from queues and sends it to switches
* in round-robin. Processing thread also calculates rate of sending to suppress
* excessive message sending.
*
* @author Naoki Shiota
*/
public class FlowPusher implements IFlowPusherService, IOFMessageListener {
private static final Logger log = LoggerFactory.getLogger(FlowPusher.class);
protected static final int DEFAULT_NUMBER_THREAD = 1;
// TODO: Values copied from elsewhere (class LearningSwitch).
// The local copy should go away!
//
protected static final int OFMESSAGE_DAMPER_CAPACITY = 50000; // TODO: find sweet spot
protected static final int OFMESSAGE_DAMPER_TIMEOUT = 250; // ms
// Number of messages sent to switch at once
protected static final int MAX_MESSAGE_SEND = 100;
private static class SwitchQueueEntry {
OFMessage msg;
public SwitchQueueEntry(OFMessage msg) {
this.msg = msg;
}
public OFMessage getOFMessage() {
return msg;
}
}
/**
* SwitchQueue represents message queue attached to a switch.
* This consists of queue itself and variables used for limiting sending rate.
*
* @author Naoki Shiota
*/
private class SwitchQueue {
List<Queue<SwitchQueueEntry>> rawQueues;
QueueState state;
// Max rate of sending message (bytes/ms). 0 implies no limitation.
long maxRate = 0; // 0 indicates no limitation
long lastSentTime = 0;
long lastSentSize = 0;
// "To be deleted" flag
boolean toBeDeleted = false;
SwitchQueue() {
rawQueues = new ArrayList<Queue<SwitchQueueEntry>>(
MsgPriority.values().length);
for (int i = 0; i < MsgPriority.values().length; ++i) {
rawQueues.add(i, new ArrayDeque<SwitchQueueEntry>());
}
state = QueueState.READY;
}
/**
* Check if sending rate is within the rate
*
* @param current Current time
* @return true if within the rate
*/
boolean isSendable(long current) {
if (maxRate == 0) {
// no limitation
return true;
}
if (current == lastSentTime) {
return false;
}
// Check if sufficient time (from aspect of rate) elapsed or not.
long rate = lastSentSize / (current - lastSentTime);
return (rate < maxRate);
}
/**
* Log time and size of last sent data.
*
* @param current Time to be sent.
* @param size Size of sent data (in bytes).
*/
void logSentData(long current, long size) {
lastSentTime = current;
lastSentSize = size;
}
boolean add(SwitchQueueEntry entry, MsgPriority priority) {
Queue<SwitchQueueEntry> queue = getQueue(priority);
if (queue == null) {
log.error("Unexpected priority : ", priority);
return false;
}
return queue.add(entry);
}
/**
* Poll single appropriate entry object according to QueueState.
*
* @return Entry object.
*/
SwitchQueueEntry poll() {
switch (state) {
case READY: {
for (int i = 0; i < rawQueues.size(); ++i) {
SwitchQueueEntry entry = rawQueues.get(i).poll();
if (entry != null) {
return entry;
}
}
return null;
}
case SUSPENDED: {
// Only polling from high priority queue
SwitchQueueEntry entry = getQueue(MsgPriority.HIGH).poll();
return entry;
}
default:
log.error("Unexpected QueueState : ", state);
return null;
}
}
/**
* Check if this object has any messages in the queues to be sent
*
* @return True if there are some messages to be sent.
*/
boolean hasMessageToSend() {
switch (state) {
case READY:
for (Queue<SwitchQueueEntry> queue : rawQueues) {
if (!queue.isEmpty()) {
return true;
}
}
break;
case SUSPENDED:
// Only checking high priority queue
return (!getQueue(MsgPriority.HIGH).isEmpty());
default:
log.error("Unexpected QueueState : ", state);
return false;
}
return false;
}
Queue<SwitchQueueEntry> getQueue(MsgPriority priority) {
return rawQueues.get(priority.ordinal());
}
}
/**
* BarrierInfo holds information to specify barrier message sent to switch.
*
* @author Naoki
*/
private static class BarrierInfo {
final long dpid;
final int xid;
static BarrierInfo create(IOFSwitch sw, OFBarrierRequest req) {
return new BarrierInfo(sw.getId(), req.getXid());
}
static BarrierInfo create(IOFSwitch sw, OFBarrierReply rpy) {
return new BarrierInfo(sw.getId(), rpy.getXid());
}
private BarrierInfo(long dpid, int xid) {
this.dpid = dpid;
this.xid = xid;
}
// Auto generated code by Eclipse
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + (int) (dpid ^ (dpid >>> 32));
result = prime * result + xid;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
BarrierInfo other = (BarrierInfo) obj;
return (this.dpid == other.dpid) && (this.xid == other.xid);
}
}
private OFMessageDamper messageDamper = null;
private IThreadPoolService threadPool = null;
private FloodlightContext context = null;
private BasicFactory factory = null;
// Map of threads versus dpid
private Map<Long, FlowPusherThread> threadMap = null;
// Map from (DPID and transaction ID) to Future objects.
private Map<BarrierInfo, OFBarrierReplyFuture> barrierFutures
= new ConcurrentHashMap<BarrierInfo, OFBarrierReplyFuture>();
private int numberThread;
/**
* Main thread that reads messages from queues and sends them to switches.
*
* @author Naoki Shiota
*/
private class FlowPusherThread extends Thread {
private Map<IOFSwitch, SwitchQueue> assignedQueues
= new ConcurrentHashMap<IOFSwitch, SwitchQueue>();
final Lock queuingLock = new ReentrantLock();
final Condition messagePushed = queuingLock.newCondition();
@Override
public void run() {
this.setName("FlowPusherThread " + this.getId());
while (true) {
while (!queuesHasMessageToSend()) {
queuingLock.lock();
try {
// wait for message pushed to queue
messagePushed.await();
} catch (InterruptedException e) {
// Interrupted to be shut down (not an error)
log.debug("FlowPusherThread is interrupted");
return;
} finally {
queuingLock.unlock();
}
}
// for safety of concurrent access, copy set of key objects
Set<IOFSwitch> keys = new HashSet<IOFSwitch>(assignedQueues.size());
for (IOFSwitch sw : assignedQueues.keySet()) {
keys.add(sw);
}
for (IOFSwitch sw : keys) {
SwitchQueue queue = assignedQueues.get(sw);
if (sw == null || queue == null) {
continue;
}
synchronized (queue) {
processQueue(sw, queue, MAX_MESSAGE_SEND);
if (queue.toBeDeleted && !queue.hasMessageToSend()) {
// remove queue if flagged to be.
assignedQueues.remove(sw);
}
}
}
}
}
/**
* Read messages from queue and send them to the switch.
* If number of messages excess the limit, stop sending messages.
*
* @param sw Switch to which messages will be sent.
* @param queue Queue of messages.
* @param max_msg Limitation of number of messages to be sent. If set to 0,
* all messages in queue will be sent.
*/
private void processQueue(IOFSwitch sw, SwitchQueue queue, int max_msg) {
// check sending rate and determine it to be sent or not
long currentTime = System.currentTimeMillis();
long size = 0;
if (queue.isSendable(currentTime)) {
int i = 0;
while (queue.hasMessageToSend()) {
// Number of messages excess the limit
if (0 < max_msg && max_msg <= i) {
break;
}
++i;
SwitchQueueEntry queueEntry;
synchronized (queue) {
queueEntry = queue.poll();
}
OFMessage msg = queueEntry.getOFMessage();
try {
messageDamper.write(sw, msg, context);
if (log.isTraceEnabled()) {
log.trace("Pusher sends message : {}", msg);
}
size += msg.getLength();
} catch (IOException e) {
e.printStackTrace();
log.error("Exception in sending message ({}) : {}", msg, e);
}
}
sw.flush();
queue.logSentData(currentTime, size);
}
}
private boolean queuesHasMessageToSend() {
for (SwitchQueue queue : assignedQueues.values()) {
if (queue.hasMessageToSend()) {
return true;
}
}
return false;
}
private void notifyMessagePushed() {
queuingLock.lock();
try {
messagePushed.signal();
} finally {
queuingLock.unlock();
}
}
}
/**
* Initialize object with one thread.
*/
public FlowPusher() {
numberThread = DEFAULT_NUMBER_THREAD;
}
/**
* Initialize object with threads of given number.
*
* @param number_thread Number of threads to handle messages.
*/
public FlowPusher(int number_thread) {
if (number_thread > 0) {
this.numberThread = number_thread;
} else {
this.numberThread = DEFAULT_NUMBER_THREAD;
}
}
/**
* Set parameters needed for sending messages.
*
* @param context FloodlightContext used for sending messages.
* If null, FlowPusher uses default context.
* @param modContext FloodlightModuleContext used for acquiring
* ThreadPoolService and registering MessageListener.
* @param factory Factory object to create OFMessage objects.
* @param damper Message damper used for sending messages.
* If null, FlowPusher creates its own damper object.
*/
public void init(FloodlightContext context,
FloodlightModuleContext modContext,
BasicFactory factory,
OFMessageDamper damper) {
this.context = context;
this.factory = factory;
this.threadPool = modContext.getServiceImpl(IThreadPoolService.class);
IFloodlightProviderService flservice
= modContext.getServiceImpl(IFloodlightProviderService.class);
flservice.addOFMessageListener(OFType.BARRIER_REPLY, this);
if (damper != null) {
messageDamper = damper;
} else {
// use default values
messageDamper = new OFMessageDamper(OFMESSAGE_DAMPER_CAPACITY,
EnumSet.of(OFType.FLOW_MOD),
OFMESSAGE_DAMPER_TIMEOUT);
}
}
/**
* Begin processing queue.
*/
public void start() {
if (factory == null) {
log.error("FlowPusher not yet initialized.");
return;
}
threadMap = new HashMap<Long, FlowPusherThread>();
for (long i = 0; i < numberThread; ++i) {
FlowPusherThread thread = new FlowPusherThread();
threadMap.put(i, thread);
thread.start();
}
}
@Override
public boolean suspend(IOFSwitch sw) {
SwitchQueue queue = getQueue(sw);
if (queue == null) {
// create queue in case suspend is called before first message addition
queue = createQueueImpl(sw);
}
synchronized (queue) {
if (queue.state == QueueState.READY) {
queue.state = QueueState.SUSPENDED;
return true;
}
return false;
}
}
@Override
public boolean resume(IOFSwitch sw) {
SwitchQueue queue = getQueue(sw);
if (queue == null) {
log.error("No queue is attached to DPID : {}", sw.getId());
return false;
}
synchronized (queue) {
if (queue.state == QueueState.SUSPENDED) {
queue.state = QueueState.READY;
// Free the latch if queue has any messages
FlowPusherThread thread = getProcessingThread(sw);
if (queue.hasMessageToSend()) {
thread.notifyMessagePushed();
}
return true;
}
return false;
}
}
@Override
public QueueState getState(IOFSwitch sw) {
SwitchQueue queue = getQueue(sw);
if (queue == null) {
return QueueState.UNKNOWN;
}
return queue.state;
}
/**
* Stop processing queue and exit thread.
*/
public void stop() {
if (threadMap == null) {
return;
}
for (FlowPusherThread t : threadMap.values()) {
t.interrupt();
}
}
@Override
public void setRate(IOFSwitch sw, long rate) {
SwitchQueue queue = getQueue(sw);
if (queue == null) {
queue = createQueueImpl(sw);
}
if (rate > 0) {
log.debug("rate for {} is set to {}", sw.getId(), rate);
synchronized (queue) {
queue.maxRate = rate;
}
}
}
@Override
public boolean createQueue(IOFSwitch sw) {
SwitchQueue queue = createQueueImpl(sw);
return (queue != null);
}
protected SwitchQueue createQueueImpl(IOFSwitch sw) {
SwitchQueue queue = getQueue(sw);
if (queue != null) {
return queue;
}
FlowPusherThread proc = getProcessingThread(sw);
queue = new SwitchQueue();
queue.state = QueueState.READY;
proc.assignedQueues.put(sw, queue);
return queue;
}
@Override
public boolean deleteQueue(IOFSwitch sw) {
return deleteQueue(sw, false);
}
@Override
public boolean deleteQueue(IOFSwitch sw, boolean forceStop) {
FlowPusherThread proc = getProcessingThread(sw);
if (forceStop) {
SwitchQueue queue = proc.assignedQueues.remove(sw);
if (queue == null) {
return false;
}
return true;
} else {
SwitchQueue queue = getQueue(sw);
if (queue == null) {
return false;
}
synchronized (queue) {
queue.toBeDeleted = true;
}
return true;
}
}
@Override
public boolean add(IOFSwitch sw, OFMessage msg) {
return add(sw, msg, MsgPriority.NORMAL);
}
@Override
public boolean add(IOFSwitch sw, OFMessage msg, MsgPriority priority) {
return addMessageImpl(sw, msg, priority);
}
@Override
public void pushFlowEntries(
Collection<Pair<IOFSwitch, FlowEntry>> entries) {
pushFlowEntries(entries, MsgPriority.NORMAL);
}
@Override
public void pushFlowEntries(
Collection<Pair<IOFSwitch, FlowEntry>> entries, MsgPriority priority) {
for (Pair<IOFSwitch, FlowEntry> entry : entries) {
add(entry.first, entry.second, priority);
}
}
@Override
public void pushFlowEntry(IOFSwitch sw, FlowEntry flowEntry) {
pushFlowEntry(sw, flowEntry, MsgPriority.NORMAL);
}
@Override
public void pushFlowEntry(IOFSwitch sw, FlowEntry flowEntry, MsgPriority priority) {
Collection<Pair<IOFSwitch, FlowEntry>> entries =
new LinkedList<Pair<IOFSwitch, FlowEntry>>();
entries.add(new Pair<IOFSwitch, FlowEntry>(sw, flowEntry));
pushFlowEntries(entries, priority);
}
/**
* Create a message from FlowEntry and add it to the queue of the switch.
*
* @param sw Switch to which message is pushed.
* @param flowEntry FlowEntry object used for creating message.
* @return true if message is successfully added to a queue.
*/
private boolean add(IOFSwitch sw, FlowEntry flowEntry, MsgPriority priority) {
//
// Create the OpenFlow Flow Modification Entry to push
//
OFFlowMod fm = (OFFlowMod) factory.getMessage(OFType.FLOW_MOD);
long cookie = flowEntry.flowEntryId().value();
short flowModCommand = OFFlowMod.OFPFC_ADD;
if (flowEntry.flowEntryUserState() == FlowEntryUserState.FE_USER_ADD) {
flowModCommand = OFFlowMod.OFPFC_ADD;
} else if (flowEntry.flowEntryUserState() == FlowEntryUserState.FE_USER_MODIFY) {
flowModCommand = OFFlowMod.OFPFC_MODIFY_STRICT;
} else if (flowEntry.flowEntryUserState() == FlowEntryUserState.FE_USER_DELETE) {
flowModCommand = OFFlowMod.OFPFC_DELETE_STRICT;
} else {
// Unknown user state. Ignore the entry
log.debug(
"Flow Entry ignored (FlowEntryId = {}): unknown user state {}",
flowEntry.flowEntryId(),
flowEntry.flowEntryUserState());
return false;
}
//
// Fetch the match conditions.
//
// NOTE: The Flow matching conditions common for all Flow Entries are
// used ONLY if a Flow Entry does NOT have the corresponding matching
// condition set.
//
OFMatch match = new OFMatch();
match.setWildcards(OFMatch.OFPFW_ALL);
FlowEntryMatch flowEntryMatch = flowEntry.flowEntryMatch();
// Match the Incoming Port
Port matchInPort = flowEntryMatch.inPort();
if (matchInPort != null) {
match.setInputPort(matchInPort.value());
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_IN_PORT);
}
// Match the Source MAC address
MACAddress matchSrcMac = flowEntryMatch.srcMac();
if (matchSrcMac != null) {
match.setDataLayerSource(matchSrcMac.toString());
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_DL_SRC);
}
// Match the Destination MAC address
MACAddress matchDstMac = flowEntryMatch.dstMac();
if (matchDstMac != null) {
match.setDataLayerDestination(matchDstMac.toString());
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_DL_DST);
}
// Match the Ethernet Frame Type
Short matchEthernetFrameType = flowEntryMatch.ethernetFrameType();
if (matchEthernetFrameType != null) {
match.setDataLayerType(matchEthernetFrameType);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_DL_TYPE);
}
// Match the VLAN ID
Short matchVlanId = flowEntryMatch.vlanId();
if (matchVlanId != null) {
match.setDataLayerVirtualLan(matchVlanId);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_DL_VLAN);
}
// Match the VLAN priority
Byte matchVlanPriority = flowEntryMatch.vlanPriority();
if (matchVlanPriority != null) {
match.setDataLayerVirtualLanPriorityCodePoint(matchVlanPriority);
match.setWildcards(match.getWildcards()
& ~OFMatch.OFPFW_DL_VLAN_PCP);
}
// Match the Source IPv4 Network prefix
IPv4Net matchSrcIPv4Net = flowEntryMatch.srcIPv4Net();
if (matchSrcIPv4Net != null) {
match.setFromCIDR(matchSrcIPv4Net.toString(), OFMatch.STR_NW_SRC);
}
// Natch the Destination IPv4 Network prefix
IPv4Net matchDstIPv4Net = flowEntryMatch.dstIPv4Net();
if (matchDstIPv4Net != null) {
match.setFromCIDR(matchDstIPv4Net.toString(), OFMatch.STR_NW_DST);
}
// Match the IP protocol
Byte matchIpProto = flowEntryMatch.ipProto();
if (matchIpProto != null) {
match.setNetworkProtocol(matchIpProto);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_NW_PROTO);
}
// Match the IP ToS (DSCP field, 6 bits)
Byte matchIpToS = flowEntryMatch.ipToS();
if (matchIpToS != null) {
match.setNetworkTypeOfService(matchIpToS);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_NW_TOS);
}
// Match the Source TCP/UDP port
Short matchSrcTcpUdpPort = flowEntryMatch.srcTcpUdpPort();
if (matchSrcTcpUdpPort != null) {
match.setTransportSource(matchSrcTcpUdpPort);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_TP_SRC);
}
// Match the Destination TCP/UDP port
Short matchDstTcpUdpPort = flowEntryMatch.dstTcpUdpPort();
if (matchDstTcpUdpPort != null) {
match.setTransportDestination(matchDstTcpUdpPort);
match.setWildcards(match.getWildcards() & ~OFMatch.OFPFW_TP_DST);
}
//
// Fetch the actions
//
Short actionOutputPort = null;
List<OFAction> openFlowActions = new ArrayList<OFAction>();
int actionsLen = 0;
FlowEntryActions flowEntryActions = flowEntry.flowEntryActions();
//
for (FlowEntryAction action : flowEntryActions.actions()) {
ActionOutput actionOutput = action.actionOutput();
ActionSetVlanId actionSetVlanId = action.actionSetVlanId();
ActionSetVlanPriority actionSetVlanPriority = action
.actionSetVlanPriority();
ActionStripVlan actionStripVlan = action.actionStripVlan();
ActionSetEthernetAddr actionSetEthernetSrcAddr = action
.actionSetEthernetSrcAddr();
ActionSetEthernetAddr actionSetEthernetDstAddr = action
.actionSetEthernetDstAddr();
ActionSetIPv4Addr actionSetIPv4SrcAddr = action
.actionSetIPv4SrcAddr();
ActionSetIPv4Addr actionSetIPv4DstAddr = action
.actionSetIPv4DstAddr();
ActionSetIpToS actionSetIpToS = action.actionSetIpToS();
ActionSetTcpUdpPort actionSetTcpUdpSrcPort = action
.actionSetTcpUdpSrcPort();
ActionSetTcpUdpPort actionSetTcpUdpDstPort = action
.actionSetTcpUdpDstPort();
ActionEnqueue actionEnqueue = action.actionEnqueue();
if (actionOutput != null) {
actionOutputPort = actionOutput.port().value();
// XXX: The max length is hard-coded for now
OFActionOutput ofa = new OFActionOutput(actionOutput.port()
.value(), (short) 0xffff);
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetVlanId != null) {
OFActionVirtualLanIdentifier ofa = new OFActionVirtualLanIdentifier(
actionSetVlanId.vlanId());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetVlanPriority != null) {
OFActionVirtualLanPriorityCodePoint ofa = new OFActionVirtualLanPriorityCodePoint(
actionSetVlanPriority.vlanPriority());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionStripVlan != null) {
if (actionStripVlan.stripVlan() == true) {
OFActionStripVirtualLan ofa = new OFActionStripVirtualLan();
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
}
if (actionSetEthernetSrcAddr != null) {
OFActionDataLayerSource ofa = new OFActionDataLayerSource(
actionSetEthernetSrcAddr.addr().toBytes());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetEthernetDstAddr != null) {
OFActionDataLayerDestination ofa = new OFActionDataLayerDestination(
actionSetEthernetDstAddr.addr().toBytes());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetIPv4SrcAddr != null) {
OFActionNetworkLayerSource ofa = new OFActionNetworkLayerSource(
actionSetIPv4SrcAddr.addr().value());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetIPv4DstAddr != null) {
OFActionNetworkLayerDestination ofa = new OFActionNetworkLayerDestination(
actionSetIPv4DstAddr.addr().value());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetIpToS != null) {
OFActionNetworkTypeOfService ofa = new OFActionNetworkTypeOfService(
actionSetIpToS.ipToS());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetTcpUdpSrcPort != null) {
OFActionTransportLayerSource ofa = new OFActionTransportLayerSource(
actionSetTcpUdpSrcPort.port());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionSetTcpUdpDstPort != null) {
OFActionTransportLayerDestination ofa = new OFActionTransportLayerDestination(
actionSetTcpUdpDstPort.port());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
if (actionEnqueue != null) {
OFActionEnqueue ofa = new OFActionEnqueue(actionEnqueue.port()
.value(), actionEnqueue.queueId());
openFlowActions.add(ofa);
actionsLen += ofa.getLength();
}
}
fm.setIdleTimeout((short) flowEntry.idleTimeout())
.setHardTimeout((short) flowEntry.hardTimeout())
.setPriority((short) flowEntry.priority())
.setBufferId(OFPacketOut.BUFFER_ID_NONE).setCookie(cookie)
.setCommand(flowModCommand).setMatch(match)
.setActions(openFlowActions)
.setLengthU(OFFlowMod.MINIMUM_LENGTH + actionsLen);
fm.setOutPort(OFPort.OFPP_NONE.getValue());
if ((flowModCommand == OFFlowMod.OFPFC_DELETE)
|| (flowModCommand == OFFlowMod.OFPFC_DELETE_STRICT)) {
if (actionOutputPort != null) {
fm.setOutPort(actionOutputPort);
}
}
//
// Set the OFPFF_SEND_FLOW_REM flag if the Flow Entry is not
// permanent.
//
if ((flowEntry.idleTimeout() != 0) ||
(flowEntry.hardTimeout() != 0)) {
fm.setFlags(OFFlowMod.OFPFF_SEND_FLOW_REM);
}
if (log.isTraceEnabled()) {
log.trace("Installing flow entry {} into switch DPID: {} flowEntryId: {} srcMac: {} dstMac: {} inPort: {} outPort: {}"
, flowEntry.flowEntryUserState()
, sw.getStringId()
, flowEntry.flowEntryId()
, matchSrcMac
, matchDstMac
, matchInPort
, actionOutputPort
);
}
return addMessageImpl(sw, fm, priority);
}
/**
* Add message to queue
*
* @param sw
* @param msg
* @param flowEntryId
* @return
*/
protected boolean addMessageImpl(IOFSwitch sw, OFMessage msg, MsgPriority priority) {
FlowPusherThread thread = getProcessingThread(sw);
SwitchQueue queue = getQueue(sw);
// create queue at first addition of message
if (queue == null) {
queue = createQueueImpl(sw);
}
SwitchQueueEntry entry = new SwitchQueueEntry(msg);
synchronized (queue) {
queue.add(entry, priority);
if (log.isTraceEnabled()) {
log.trace("Message is pushed : {}", entry.getOFMessage());
}
}
thread.notifyMessagePushed();
return true;
}
@Override
public OFBarrierReply barrier(IOFSwitch sw) {
OFMessageFuture<OFBarrierReply> future = barrierAsync(sw);
if (future == null) {
return null;
}
try {
return future.get();
} catch (InterruptedException e) {
e.printStackTrace();
log.error("InterruptedException: {}", e);
return null;
} catch (ExecutionException e) {
e.printStackTrace();
log.error("ExecutionException: {}", e);
return null;
}
}
@Override
public OFBarrierReplyFuture barrierAsync(IOFSwitch sw) {
// TODO creation of message and future should be moved to OFSwitchImpl
if (sw == null) {
return null;
}
OFBarrierRequest msg = createBarrierRequest(sw);
OFBarrierReplyFuture future = new OFBarrierReplyFuture(threadPool, sw, msg.getXid());
barrierFutures.put(BarrierInfo.create(sw, msg), future);
addMessageImpl(sw, msg, MsgPriority.NORMAL);
return future;
}
protected OFBarrierRequest createBarrierRequest(IOFSwitch sw) {
OFBarrierRequest msg = (OFBarrierRequest) factory.getMessage(OFType.BARRIER_REQUEST);
msg.setXid(sw.getNextTransactionId());
return msg;
}
/**
* Get a queue attached to a switch.
*
* @param sw Switch object
* @return Queue object
*/
protected SwitchQueue getQueue(IOFSwitch sw) {
if (sw == null) {
return null;
}
FlowPusherThread th = getProcessingThread(sw);
if (th == null) {
return null;
}
return th.assignedQueues.get(sw);
}
/**
* Get a hash value correspondent to a switch.
*
* @param sw Switch object
* @return Hash value
*/
protected long getHash(IOFSwitch sw) {
// This code assumes DPID is sequentially assigned.
// TODO consider equalization algorithm
return sw.getId() % numberThread;
}
/**
* Get a Thread object which processes the queue attached to a switch.
*
* @param sw Switch object
* @return Thread object
*/
protected FlowPusherThread getProcessingThread(IOFSwitch sw) {
long hash = getHash(sw);
return threadMap.get(hash);
}
@Override
public String getName() {
return "flowpusher";
}
@Override
public boolean isCallbackOrderingPrereq(OFType type, String name) {
return false;
}
@Override
public boolean isCallbackOrderingPostreq(OFType type, String name) {
return false;
}
@Override
public Command receive(IOFSwitch sw, OFMessage msg, FloodlightContext cntx) {
if (log.isTraceEnabled()) {
log.trace("Received BARRIER_REPLY from : {}", sw.getId());
}
if (msg.getType() != OFType.BARRIER_REPLY) {
log.error("Unexpected reply message : {}", msg.getType());
return Command.CONTINUE;
}
OFBarrierReply reply = (OFBarrierReply) msg;
BarrierInfo info = BarrierInfo.create(sw, reply);
// Deliver future if exists
OFBarrierReplyFuture future = barrierFutures.get(info);
if (future != null) {
future.deliverFuture(sw, msg);
barrierFutures.remove(info);
}
return Command.CONTINUE;
}
}