blob: d526a7ab590e642a66d677c06570f6c0af08f634 [file] [log] [blame]
Toru Furusawa28988892017-10-30 17:28:40 -07001module tapi-common {
Yuta HIGUCHI80d0bbd2018-02-28 11:13:11 -08002 namespace "urn:onf:otcc:yang:tapi-common";
Toru Furusawa28988892017-10-30 17:28:40 -07003 prefix tapi-common;
Yuta HIGUCHI80d0bbd2018-02-28 11:13:11 -08004 organization "ONF OTCC (Open Transport Configuration & Control) Project";
hirokid8fd7862018-10-09 15:24:24 +09005 contact "
6 Project Web: <https://wiki.opennetworking.org/display/OTCC/TAPI>
7 Project List: <mailto:transport-api@opennetworking.org>
8 Editor: Karthik Sethuraman
9 <mailto:karthik.sethuraman@necam.com>";
Yuta HIGUCHI80d0bbd2018-02-28 11:13:11 -080010 description "
11 This module contains TAPI Common Model definitions.
12 Source: TapiCommon.uml
13 Copyright (c) 2018 Open Networking Foundation (ONF). All rights reserved.
14 License: This module is distributed under the Apache License 2.0
15 ";
hirokid8fd7862018-10-09 15:24:24 +090016 revision 2018-10-16 {
17 description "ONF Transport API version 2.1.0.
18 - The TAPI YANG models included in this TAPI release (v2.1.0) are a *normative* part of the TAPI SDK.
19 - The YANG specifications have been generated from the corresponding UML model using the [ONF EAGLE UML2YANG mapping tool]
20 <https://github.com/OpenNetworkingFoundation/EagleUmlYang>
21 and further edited manually to comply with the [ONF IISOMI UML2YANG mapping guidelines]
22 <https://wiki.opennetworking.org/display/OIMT/UML+-+YANG+Guidelines>
23 - Status of YANG model artifacts can be determined by referring to the corresponding UML artifacts.
24 As described in the UML models, some artifacts are considered *experimental*, and thus the corresponding YANG artifacts.
25 - The ONF TAPI release process does not guarantee backward compatibility of YANG models across major versions of TAPI releases.
26 The YANG model backward compatibility criteria are outlined in section 11 of <https://tools.ietf.org/html/rfc7950>.
27 YANG models included in this release are not backward compatible with previous TAPI releases.
28 - Changes included in this TAPI release (v2.1.0) are listed in
29 <https://github.com/OpenNetworkingFoundation/TAPI/blob/develop/CHANGE_LOG/change-log.2.1.0.md>";
Ai Hamano06163902018-12-06 09:18:20 +090030 reference "ONF-TR-527, ONF-TR-512, ONF-TR-531, RFC 7950, RFC 6087 and ONF TAPI UML model
hirokid8fd7862018-10-09 15:24:24 +090031 <https://github.com/OpenNetworkingFoundation/TAPI/tree/v2.1.0/UML>";
32 }
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080033 revision 2018-03-07 {
Ai Hamano06163902018-12-06 09:18:20 +090034 description "ONF Transport API version 2.0.2
35 This YANG module has been generated from the TAPI UML Model using the IISOMI-Eagle xmi2yang mapping tool.
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070036 Changes in this revision: <https://github.com/OpenNetworkingFoundation/TAPI/blob/develop/CHANGE_LOG/change-log.2.0.2.md>";
Ai Hamano06163902018-12-06 09:18:20 +090037 reference "ONF-TR-527, ONF-TR-512, ONF-TR-531, RFC 6020, RFC 6087 and ONF TAPI UML model
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070038 <https://github.com/OpenNetworkingFoundation/TAPI/tree/v2.0.2/UML>";
39 }
40 revision 2018-02-16 {
Ai Hamano06163902018-12-06 09:18:20 +090041 description "ONF Transport API version 2.0.1
42 This YANG module has been generated from the TAPI UML Model using the IISOMI-Eagle xmi2yang mapping tool.
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070043 Changes in this revision: <https://github.com/OpenNetworkingFoundation/TAPI/blob/develop/CHANGE_LOG/change-log.2.0.1.md>";
Ai Hamano06163902018-12-06 09:18:20 +090044 reference "ONF-TR-527, ONF-TR-512, ONF-TR-531, RFC 6020, RFC 6087 and ONF TAPI UML model
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070045 <https://github.com/OpenNetworkingFoundation/TAPI/tree/v2.0.1/UML>";
46 }
47 revision 2018-01-02 {
Ai Hamano06163902018-12-06 09:18:20 +090048 description "ONF Transport API version 2.0.0
49 This YANG module has been generated from the TAPI UML Model using the IISOMI-Eagle xmi2yang mapping tool.
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070050 Changes in this revision: <https://github.com/OpenNetworkingFoundation/TAPI/blob/develop/CHANGE_LOG/change-log.2.0.0.md>";
Ai Hamano06163902018-12-06 09:18:20 +090051 reference "ONF-TR-527, ONF-TR-512, ONF-TR-531, RFC 6020, RFC 6087 and ONF TAPI UML model
Yuta HIGUCHIe1ca23f2018-04-06 10:05:45 -070052 <https://github.com/OpenNetworkingFoundation/TAPI/tree/v2.0.0/UML>";
Toru Furusawa28988892017-10-30 17:28:40 -070053 }
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080054
Ai Hamano06163902018-12-06 09:18:20 +090055 /**************************
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080056 * definitions of refrences
Ai Hamano06163902018-12-06 09:18:20 +090057 **************************/
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080058 grouping service-interface-point-ref {
hirokid8fd7862018-10-09 15:24:24 +090059 leaf service-interface-point-uuid {
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080060 type leafref {
61 path '/tapi-common:context/tapi-common:service-interface-point/tapi-common:uuid';
62 }
Yuta HIGUCHI7f165b12018-03-25 19:05:29 -070063 description "none";
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080064 }
Yuta HIGUCHI7f165b12018-03-25 19:05:29 -070065 description "none";
Yuta HIGUCHI348bba72018-03-08 13:46:48 -080066 }
67
Ai Hamano06163902018-12-06 09:18:20 +090068 /**************************
Toru Furusawa28988892017-10-30 17:28:40 -070069 * package object-classes
Ai Hamano06163902018-12-06 09:18:20 +090070 **************************/
71 grouping admin-state-pac {
72 leaf administrative-state {
73 type administrative-state;
74 description "none";
Toru Furusawa28988892017-10-30 17:28:40 -070075 }
Ai Hamano06163902018-12-06 09:18:20 +090076 leaf operational-state {
77 type operational-state;
78 config false;
79 description "none";
Toru Furusawa28988892017-10-30 17:28:40 -070080 }
Ai Hamano06163902018-12-06 09:18:20 +090081 leaf lifecycle-state {
82 type lifecycle-state;
83 config false;
84 description "none";
85 }
86 description "Provides state attributes that are applicable to an entity that can be administered. Such an entity also has operational and lifecycle aspects.";
87 }
88 grouping global-class {
89 leaf uuid {
90 type uuid;
91 description "UUID: An identifier that is universally unique within an identifier space, where the identifier space is itself globally unique, and immutable. An UUID carries no semantics with respect to the purpose or state of the entity.
92 UUID here uses string representation as defined in RFC 4122. The canonical representation uses lowercase characters.
93 Pattern: [0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-' + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}
94 Example of a UUID in string representation: f81d4fae-7dec-11d0-a765-00a0c91e6bf6";
95 }
96 list name {
97 key 'value-name';
98 uses name-and-value;
99 description "List of names. A property of an entity with a value that is unique in some namespace but may change during the life of the entity. A name carries no semantics with respect to the purpose of the entity.";
100 }
101 description "The TAPI GlobalComponent serves as the super class for all TAPI entities that can be directly retrieved by their ID. As such, these are first class entities and their ID is expected to be globally unique. ";
102 }
103 grouping lifecycle-state-pac {
104 leaf lifecycle-state {
105 type lifecycle-state;
106 config false;
107 description "none";
108 }
109 description "Provides state attributes for an entity that has lifeccycle aspects only.";
110 }
111 grouping local-class {
112 leaf local-id {
113 type string;
114 description "none";
115 }
116 list name {
117 key 'value-name';
118 uses name-and-value;
119 description "List of names. A property of an entity with a value that is unique in some namespace but may change during the life of the entity. A name carries no semantics with respect to the purpose of the entity.";
120 }
121 description "The TAPI GlobalComponent serves as the super class for all TAPI entities that can be directly retrieved by their ID. As such, these are first class entities and their ID is expected to be globally unique. ";
122 }
123 grouping operational-state-pac {
124 leaf operational-state {
125 type operational-state;
126 config false;
127 description "none";
128 }
129 leaf lifecycle-state {
130 type lifecycle-state;
131 config false;
132 description "none";
133 }
134 description "Provides state attributes that are applicable to an entity that reflects operational aspects. Such an entity is expected to also have lifecycle aspects.";
135 }
136 container context {
137 uses tapi-context;
138 presence "Root container for all TAPI interaction";
139 description "none";
140 }
141 grouping tapi-context {
142 list service-interface-point {
143 key 'uuid';
144 uses service-interface-point;
145 description "none";
146 }
147 uses global-class;
148 description "The Network Control Domain (NCD) object class represents the scope of control that a particular SDN controller has with respect to a particular network, (i.e., encompassing a designated set of interconnected (virtual) network elements).";
149 }
150 grouping resource-spec {
151 uses global-class;
152 description "none";
153 }
154 grouping service-spec {
155 uses global-class;
156 description "none";
157 }
158 grouping service-interface-point {
159 leaf layer-protocol-name {
160 type layer-protocol-name;
161 config false;
162 description "Usage of layerProtocolName [>1] in the ServiceInterfacePoint should be considered experimental";
163 }
164 leaf-list supported-layer-protocol-qualifier {
165 type layer-protocol-qualifier;
166 config false;
167 min-elements 1;
168 description "none";
169 }
170 uses resource-spec;
171 uses admin-state-pac;
172 uses capacity-pac;
173 description "The LogicalTerminationPoint (LTP) object class encapsulates the termination and adaptation functions of one or more transport layers.
174 The structure of LTP supports all transport protocols including circuit and packet forms.";
175 }
176 grouping capacity-pac {
177 container total-potential-capacity {
178 config false;
179 uses capacity;
180 description "An optimistic view of the capacity of the TopologicalEntity assuming that any shared capacity is available to be taken.";
181 }
182 container available-capacity {
183 config false;
184 uses capacity;
185 description "Capacity available to be assigned.";
186 }
187 description "The TopologicalEntity derives capacity from the underlying realization.
188 A TopologicalEntity may be an abstraction and virtualization of a subset of the underlying capability offered in a view or may be directly reflecting the underlying realization.
189 A TopologicalEntity may be directly used in the view or may be assigned to another view for use.
190 The clients supported by a multi-layer TopologicalEntity may interact such that the resources used by one client may impact those available to another. This is derived from the LTP spec details.
191 Represents the capacity available to user (client) along with client interaction and usage.
192 A TopologicalEntity may reflect one or more client protocols and one or more members for each profile.";
193 }
194 grouping termination-pac {
195 leaf termination-direction {
196 type termination-direction;
197 config false;
198 description "The overall directionality of the LP.
199 - A BIDIRECTIONAL LP will have some SINK and/or SOURCE flowss.
200 - A SINK LP can only contain elements with SINK flows or CONTRA_DIRECTION_SOURCE flows
201 - A SOURCE LP can only contain SOURCE flows or CONTRA_DIRECTION_SINK flows";
202 }
203 leaf termination-state {
204 type termination-state;
205 config false;
206 description "Indicates whether the layer is terminated and if so how.";
207 }
208 description "Each transport layer is represented by a LayerProtocol (LP) instance. The LayerProtocol instances it can be used for controlling termination and monitoring functionality.
209 It can also be used for controlling the adaptation (i.e. encapsulation and/or multiplexing of client signal), tandem connection monitoring, traffic conditioning and/or shaping functionality at an intermediate point along a connection.
210 Where the client – server relationship is fixed 1:1 and immutable, the layers can be encapsulated in a single LTP instance. Where the is a n:1 relationship between client and server, the layers must be split over two separate instances of LTP. ";
211 }
212
213 /**************************
214 * package type-definitions
215 **************************/
216 identity LAYER_PROTOCOL_QUALIFIER {
217 description "none";
218 }
219 typedef administrative-state {
220 type enumeration {
221 enum LOCKED {
222 description "Users are administratively prohibited from making use of the resource.";
223 }
224 enum UNLOCKED {
225 description "Users are allowed to use the resource";
226 }
227 }
228 description "The possible values of the administrativeState.";
229 }
230 typedef date-and-time {
231 type string;
232 description "This primitive type defines the date and time according to the following structure:
233 yyyyMMddhhmmss.s[Z|{+|-}HHMm] where:
234 yyyy 0000..9999 year
235 MM 01..12 month
236 dd 01..31 day
237 hh 00..23 hour
238 mm 00..59 minute
239 ss 00..59 second
240 s .0...9 tenth of second (set to .0 if EMS or NE cannot support this granularity)
241 Z Z indicates UTC (rather than local time)
242 {+|-} + or - delta from UTC
243 HH 00..23 time zone difference in hours
244 Mm 00..59 time zone difference in minutes.";
245 }
246 typedef directive-value {
247 type enumeration {
248 enum MINIMIZE {
Toru Furusawa28988892017-10-30 17:28:40 -0700249 description "none";
250 }
Ai Hamano06163902018-12-06 09:18:20 +0900251 enum MAXIMIZE {
252 description "none";
253 }
254 enum ALLOW {
255 description "none";
256 }
257 enum DISALLOW {
258 description "none";
259 }
260 enum DONT_CARE {
261 description "none";
262 }
Toru Furusawa28988892017-10-30 17:28:40 -0700263 }
Ai Hamano06163902018-12-06 09:18:20 +0900264 description "none";
265 }
266 typedef forwarding-direction {
267 type enumeration {
268 enum BIDIRECTIONAL {
269 description "The Fowarding entity supports both BIDIRECTIONAL flows at all Ports (i.e. all Ports have both an INPUT flow and an OUTPUT flow defined)";
270 }
271 enum UNIDIRECTIONAL {
272 description "The Forwarding entity has Ports that are either INPUT or OUTPUT. It has no BIDIRECTIONAL Ports.";
273 }
274 enum UNDEFINED_OR_UNKNOWN {
275 description "Not a normal state. The system is unable to determine the correct value.";
276 }
277 }
278 description "The directionality of a Forwarding entity.";
279 }
280 typedef layer-protocol-name {
281 type enumeration {
282 enum ODU {
283 description "Models the ODU layer as per ITU-T G.872";
284 }
285 enum ETH {
286 description "Models the ETH layer as per ITU-T G.8010";
287 }
288 enum DSR {
289 description "Models a Digital Signal of an unspecified rate. This value can be used when the intent is to respresent an generic digital layer signal without making any statement on its format or overhead (processing) capabilities.";
290 }
291 enum PHOTONIC_MEDIA {
292 description "Models the OCH, OTSi, OTSiA, OTSiG, OMS, OTS and Media channels as per ITU-T G.872 (2017) version 4";
293 }
294 }
295 description "Provides a controlled list of layer protocol names and indicates the naming authority.
296 Note that it is expected that attributes will be added to this structure to convey the naming authority name, the name of the layer protocol using a human readable string and any particular standard reference.
297 Layer protocol names include:
298 - Layer 1 (L1): OTU, ODU
299 - Layer 2 (L2): Carrier Grade Ethernet (ETY, ETH), MPLS-TP (MT)
300 ";
301 }
302 typedef lifecycle-state {
303 type enumeration {
304 enum PLANNED {
305 description "The resource is planned but is not present in the network.";
306 }
307 enum POTENTIAL_AVAILABLE {
308 description "The supporting resources are present in the network but are shared with other clients; or require further configuration before they can be used; or both.
309 o When a potential resource is configured and allocated to a client it is moved to the installed state for that client.
310 o If the potential resource has been consumed (e.g. allocated to another client) it is moved to the planned state for all other clients.";
311 }
312 enum POTENTIAL_BUSY {
313 description "The supporting resources are present in the network but are shared with other clients; or require further configuration before they can be used; or both.
314 o When a potential resource is configured and allocated to a client it is moved to the installed state for that client.
315 o If the potential resource has been consumed (e.g. allocated to another client) it is moved to the planned state for all other clients.";
316 }
317 enum INSTALLED {
318 description "The resource is present in the network and is capable of providing the service expected.";
319 }
320 enum PENDING_REMOVAL {
321 description "The resource has been marked for removal";
322 }
323 }
324 description "The possible values of the lifecycleState.";
325 }
326 grouping name-and-value {
327 leaf value-name {
328 type string;
329 description "The name of the value. The value need not have a name.";
330 }
331 leaf value {
332 type string;
333 description "The value";
334 }
335 description "A scoped name-value pair";
336 }
337 typedef operational-state {
338 type enumeration {
339 enum DISABLED {
340 description "The resource is unable to meet the SLA of the user of the resource. If no (explicit) SLA is defined the resource is disabled if it is totally inoperable and unable to provide service to the user.";
341 }
342 enum ENABLED {
343 description "The resource is partially or fully operable and available for use";
344 }
345 }
346 description "The possible values of the operationalState.";
347 }
348 typedef port-direction {
349 type enumeration {
350 enum BIDIRECTIONAL {
351 description "The Port has both an INPUT flow and an OUTPUT flow defined.";
352 }
353 enum INPUT {
354 description "The Port only has definition for a flow into the Forwarding entity (i.e. an ingress flow).";
355 }
356 enum OUTPUT {
357 description "The Port only has definition for a flow out of the Forwarding entity (i.e. an egress flow).";
358 }
359 enum UNIDENTIFIED_OR_UNKNOWN {
360 description "Not a normal state. The system is unable to determine the correct value.";
361 }
362 }
363 description "The orientation of flow at the Port of a Forwarding entity";
364 }
365 typedef port-role {
366 type enumeration {
367 enum SYMMETRIC {
368 description "none";
369 }
370 enum ROOT {
371 description "none";
372 }
373 enum LEAF {
374 description "none";
375 }
376 enum TRUNK {
377 description "none";
378 }
379 enum UNKNOWN {
380 description "none";
381 }
382 }
383 description "The role of an end in the context of the function of the forwarding entity that it bounds";
384 }
385 typedef termination-direction {
386 type enumeration {
387 enum BIDIRECTIONAL {
388 description "A Termination with both SINK and SOURCE flows.";
389 }
390 enum SINK {
391 description "The flow is up the layer stack from the server side to the client side.
392 Considering an example of a Termination function within the termination entity, a SINK flow:
393 - will arrive at at the base of the termination function (the server side) where it is essentially at an INPUT to the termination component
394 - then will be decoded and deconstructed
395 - then relevant parts of the flow will be sent out of the termination function (the client side) where it is essentially at an OUTPUT from the termination component
396 A SINK termination is one that only supports a SINK flow.
397 A SINK termiation can be bound to an OUTPUT Port of a Forwarding entity";
398 }
399 enum SOURCE {
400 description "The flow is down the layer stack from the server side to the client side.
401 Considering an example of a Termination function within the termination entity, a SOURCE flow:
402 - will arrive at at the top of the termination function (the client side) where it is essentially at an INPUT to the termination component
403 - then will be assembled with various overheads etc and will be coded
404 - then coded form of the assembly of flow will be sent out of the termination function (the server side) where it is essentially at an OUTPUT from the termination component
405 A SOURCE termination is one that only supports a SOURCE flow.
406 A SOURCE termiation can be bound to an INPUT Port of a Forwarding entity";
407 }
408 enum UNDEFINED_OR_UNKNOWN {
409 description "Not a normal state. The system is unable to determine the correct value.";
410 }
411 }
412 description "The directionality of a termination entity";
413 }
414 typedef termination-state {
415 type enumeration {
416 enum LP_CAN_NEVER_TERMINATE {
417 description "A non-flexible case that can never be terminated.";
418 }
419 enum LT_NOT_TERMINATED {
420 description "A flexible termination that can terminate but is currently not terminated.";
421 }
422 enum TERMINATED_SERVER_TO_CLIENT_FLOW {
423 description "A flexible termination that is currently terminated for server to client flow only.";
424 }
425 enum TERMINATED_CLIENT_TO_SERVER_FLOW {
426 description "A flexible termination that is currently terminated for client to server flow only.";
427 }
428 enum TERMINATED_BIDIRECTIONAL {
429 description "A flexible termination that is currently terminated in both directions of flow.";
430 }
431 enum LT_PERMENANTLY_TERMINATED {
432 description "A non-flexible termination that is always terminated (in both directions of flow for a bidirectional case and in the one direction of flow for both unidirectional cases).";
433 }
434 enum TERMINATION_STATE_UNKNOWN {
435 description "There TerminationState cannot be determined.";
436 }
437 }
438 description "Provides support for the range of behaviours and specific states that an LP can take with respect to termination of the signal.
439 Indicates to what degree the LayerTermination is terminated.";
440 }
441 typedef uuid {
442 type string;
443 description "The univeral ID value where the mechanism for generation is defned by some authority not directly referenced in the structure.
444 UUID here uses string representation as defined in RFC 4122. The canonical representation uses lowercase characters.
445 Pattern: [0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-' + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}
446 Example of a UUID in string representation: f81d4fae-7dec-11d0-a765-00a0c91e6bf6";
447 }
448 grouping capacity {
449 container total-size {
450 uses capacity-value;
451 description "Total capacity of the TopologicalEntity in MB/s. In case of bandwidthProfile, this is expected to same as the committedInformationRate.";
452 }
453 container bandwidth-profile {
454 uses bandwidth-profile;
455 description "none";
456 }
457 description "Information on capacity of a particular TopologicalEntity.";
458 }
459 grouping bandwidth-profile {
460 leaf bw-profile-type {
461 type bandwidth-profile-type;
462 description "none";
463 }
464 container committed-information-rate {
465 uses capacity-value;
466 description "none";
467 }
468 container committed-burst-size {
469 uses capacity-value;
470 description "none";
471 }
472 container peak-information-rate {
473 uses capacity-value;
474 description "none";
475 }
476 container peak-burst-size {
477 uses capacity-value;
478 description "none";
479 }
480 leaf color-aware {
481 type boolean;
482 description "none";
483 }
484 leaf coupling-flag {
485 type boolean;
486 description "none";
487 }
488 description "none";
489 }
490 grouping capacity-value {
491 leaf value {
492 type uint64;
493 description "none";
494 }
495 leaf unit {
496 type capacity-unit;
497 description "none";
498 }
499 description "The Capacity (Bandwidth) values that are applicable for digital layers.";
500 }
501 typedef capacity-unit {
502 type enumeration {
503 enum TB {
504 description "Indicates that the integer CapacityValue is in TeraBytes";
505 }
506 enum TBPS {
507 description "Indicates that the integer CapacityValue is in Terabit-per-second";
508 }
509 enum GB {
510 description "Indicates that the integer CapacityValue is in GigaBytes";
511 }
512 enum GBPS {
513 description "Indicates that the integer CapacityValue is in Gigabit-per-second";
514 }
515 enum MB {
516 description "Indicates that the integer CapacityValue is in MegaBytes";
517 }
518 enum MBPS {
519 description "Indicates that the integer CapacityValue is in Megabit-per-second";
520 }
521 enum KB {
522 description "Indicates that the integer CapacityValue is in KiloBytes";
523 }
524 enum KBPS {
525 description "Indicates that the integer CapacityValue is in Kilobit-per-second";
526 }
527 enum GHz {
528 description "none";
529 }
530 enum MHz {
531 description "none";
532 }
533 }
534 description "none";
535 }
536 typedef bandwidth-profile-type {
537 type enumeration {
538 enum MEF_10.x {
539 description "none";
540 }
541 enum RFC_2697 {
542 description "none";
543 }
544 enum RFC_2698 {
545 description "none";
546 }
547 enum RFC_4115 {
548 description "none";
549 }
550 }
551 description "none";
552 }
553 grouping time-range {
554 leaf end-time {
555 type date-and-time;
556 description "none";
557 }
558 leaf start-time {
559 type date-and-time;
560 description "none";
561 }
562 description "none";
563 }
564 grouping time-period {
565 leaf value {
566 type uint64;
567 description "none";
568 }
569 leaf unit {
570 type time-unit;
571 description "none";
572 }
573 description "none";
574 }
575 typedef time-unit {
576 type enumeration {
577 enum YEARS {
578 description "none";
579 }
580 enum MONTHS {
581 description "none";
582 }
583 enum DAYS {
584 description "none";
585 }
586 enum HOURS {
587 description "none";
588 }
589 enum MINUTES {
590 description "none";
591 }
592 enum SECONDS {
593 description "none";
594 }
595 enum MILLISECONDS {
596 description "none";
597 }
598 enum MICROSECONDS {
599 description "none";
600 }
601 enum NANOSECONDS {
602 description "none";
603 }
604 enum PICOSECONDS {
605 description "none";
606 }
607 }
608 description "none";
609 }
610 grouping time-interval {
611 list period {
612 key 'unit';
613 min-elements 1;
614 max-elements 5;
615 uses time-period;
616 description "none";
617 }
618 description "none";
619 }
620 typedef layer-protocol-qualifier {
621 type identityref {
622 base LAYER_PROTOCOL_QUALIFIER;
623 }
624 description "This enumeration is used to qualify the sub-layers (if applicable) for a specific LayerProtocol.
625 This extensible enumeration is intentionally empty in the common module and will be augmented with layer-specific values in the respective technology-specific modules.
626 Examples:
627 - LayerProtocolName := OPTICAL_DATA_UNIT
628 LayerProtocolQualifier := 'ODU_FLEX', 'ODU_0', 'ODU_1', 'ODU_2', 'ODU_2E', 'ODU_3', 'ODU_4'', 'ODU_CBR'', 'ODU_GFP'', 'ODU_GFP_HAO', etc
629 - LayerProtocolName := DIGITAL_SIGNAL_RATE
630 LayerProtocolQualifier := 'GBE', '10_GBE_WAN', '10_GBE_LAN', '100_GBE', 'FC_100', 'FC_200', 'FC_400', 'FC_800', 'FC_1200', 'FC_1600', 'FC_3200', 'STM_1', 'STM_4', 'STM_16', 'STM_64', 'STM_256', 'OC_3', 'OC_12', 'OC_48', 'OC_192', 'OC_768', 'OTU_1', 'OTU_2', 'OTU_2E', 'OTU_3', 'OTU_4', 'GPON', 'XGPON', 'IB_SDR', 'IB_DDR', 'IB_QDR', 'SBCON_ESCON', 'DVB_ASI', 'SDI', 'SDI_1G5', 'SDI_3G', etc
631 - LayerProtocolName := PHOTONIC_MEDIA
632 LayerProtocolQualifier := OCH, OTSi, OTSiA, NMC, NMCA, SMC, SMCA, OMS, OTS
633 ";
634 }
635
636 /**************************
637 * package interfaces
638 **************************/
639 rpc get-service-interface-point-details {
640 description "none";
641 input {
642 leaf sip-id-or-name {
Toru Furusawa28988892017-10-30 17:28:40 -0700643 type string;
644 description "none";
645 }
Toru Furusawa28988892017-10-30 17:28:40 -0700646 }
Ai Hamano06163902018-12-06 09:18:20 +0900647 output {
648 container sip {
649 uses service-interface-point;
Toru Furusawa28988892017-10-30 17:28:40 -0700650 description "none";
651 }
Toru Furusawa28988892017-10-30 17:28:40 -0700652 }
Ai Hamano06163902018-12-06 09:18:20 +0900653 }
654 rpc get-service-interface-point-list {
655 description "none";
656 output {
657 list sip {
Toru Furusawa28988892017-10-30 17:28:40 -0700658 key 'uuid';
Toru Furusawa28988892017-10-30 17:28:40 -0700659 uses service-interface-point;
660 description "none";
661 }
Toru Furusawa28988892017-10-30 17:28:40 -0700662 }
Ai Hamano06163902018-12-06 09:18:20 +0900663 }
664 rpc update-service-interface-point {
665 description "none";
666 input {
667 leaf sip-id-or-name {
Toru Furusawa28988892017-10-30 17:28:40 -0700668 type string;
Toru Furusawa28988892017-10-30 17:28:40 -0700669 description "none";
670 }
Ai Hamano06163902018-12-06 09:18:20 +0900671 leaf state {
672 type administrative-state;
Toru Furusawa28988892017-10-30 17:28:40 -0700673 description "none";
674 }
Toru Furusawa28988892017-10-30 17:28:40 -0700675 }
Ai Hamano06163902018-12-06 09:18:20 +0900676 }
Toru Furusawa28988892017-10-30 17:28:40 -0700677}