| # Copyright 2017 Open Networking Foundation (ONF) |
| # |
| # Please refer questions to either the onos test mailing list at <onos-test@onosproject.org>, |
| # the System Testing Plans and Results wiki page at <https://wiki.onosproject.org/x/voMg>, |
| # or the System Testing Guide page at <https://wiki.onosproject.org/x/WYQg> |
| # |
| # TestON is free software: you can redistribute it and/or modify |
| # it under the terms of the GNU General Public License as published by |
| # the Free Software Foundation, either version 2 of the License, or |
| # (at your option) any later version. |
| # |
| # TestON is distributed in the hope that it will be useful, |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| # GNU General Public License for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with TestON. If not, see <http://www.gnu.org/licenses/>. |
| # |
| # If you have any questions, or if you don't understand R, |
| # please contact Jeremy Ronquillo: jeremyr@opennetworking.org |
| |
| # ********************************************************** |
| # STEP 1: File management. |
| # ********************************************************** |
| |
| print( "STEP 1: File management." ) |
| |
| # Command line arguments are read. Args usually include the database filename and the output |
| # directory for the graphs to save to. |
| # ie: Rscript SCPFgraphGenerator SCPFsampleDataDB.csv ~/tmp/ |
| print( "Reading commmand-line args." ) |
| args <- commandArgs( trailingOnly=TRUE ) |
| |
| # Import libraries to be used for graphing and organizing data, respectively. |
| # Find out more about ggplot2: https://github.com/tidyverse/ggplot2 |
| # reshape2: https://github.com/hadley/reshape |
| print( "Importing libraries." ) |
| library( ggplot2 ) |
| library( reshape2 ) |
| library( RPostgreSQL ) # For databases |
| |
| # Check if sufficient args are provided. |
| if ( is.na( args[ 9 ] ) ){ |
| print( "Usage: Rscript SCPFIntentInstallWithdrawRerouteLat.R <isFlowObj> <database-host> <database-port> <database-user-id> <database-password> <test-name> <branch-name> <batch-size> <directory-to-save-graphs>" ) |
| q() # basically exit(), but in R |
| } |
| |
| flowObjFileModifier <- "" |
| if ( args[ 1 ] == "y" ){ |
| flowObjFileModifier <- "fobj_" |
| } |
| |
| # Filenames for output graphs include the testname and the graph type. |
| # See the examples below. paste() is used to concatenate strings. |
| |
| errBarOutputFile <- paste( args[ 9 ], "SCPFIntentInstallWithdrawRerouteLat", sep="" ) |
| errBarOutputFile <- paste( errBarOutputFile, args[ 7 ], sep="_" ) |
| if ( args[ 1 ] == "y" ){ |
| errBarOutputFile <- paste( errBarOutputFile, "_fobj", sep="" ) |
| } |
| errBarOutputFile <- paste( errBarOutputFile, "_", sep="" ) |
| errBarOutputFile <- paste( errBarOutputFile, args[ 8 ], sep="" ) |
| errBarOutputFile <- paste( errBarOutputFile, "-batchSize", sep="" ) |
| errBarOutputFile <- paste( errBarOutputFile, "_graph.jpg", sep="" ) |
| |
| print( "Reading from databases." ) |
| |
| con <- dbConnect( dbDriver( "PostgreSQL" ), dbname="onostest", host=args[ 2 ], port=strtoi( args[ 3 ] ), user=args[ 4 ],password=args[ 5 ] ) |
| |
| command1 <- paste( "SELECT * FROM intent_latency_", flowObjFileModifier, sep="" ) |
| command1 <- paste( command1, "tests WHERE batch_size=", sep="" ) |
| command1 <- paste( command1, args[ 8 ], sep="" ) |
| command1 <- paste( command1, " AND branch = '", sep="" ) |
| command1 <- paste( command1, args[ 7 ], sep="" ) |
| command1 <- paste( command1, "' AND date IN ( SELECT MAX( date ) FROM intent_latency_", sep="" ) |
| command1 <- paste( command1, flowObjFileModifier, sep="" ) |
| command1 <- paste( command1, "tests WHERE branch='", sep="" ) |
| command1 <- paste( command1, args[ 7 ], sep="" ) |
| command1 <- paste( command1, "')", sep="" ) |
| |
| print( paste( "Sending SQL command:", command1 ) ) |
| |
| fileData1 <- dbGetQuery( con, command1 ) |
| |
| command2 <- paste( "SELECT * FROM intent_reroute_latency_", flowObjFileModifier, sep="" ) |
| command2 <- paste( command2, "tests WHERE batch_size=", sep="" ) |
| command2 <- paste( command2, args[ 8 ], sep="" ) |
| command2 <- paste( command2, " AND branch = '", sep="" ) |
| command2 <- paste( command2, args[ 7 ], sep="" ) |
| command2 <- paste( command2, "' AND date IN ( SELECT MAX( date ) FROM intent_reroute_latency_", sep="" ) |
| command2 <- paste( command2, flowObjFileModifier, sep="" ) |
| command2 <- paste( command2, "tests WHERE branch='", sep="" ) |
| command2 <- paste( command2, args[ 7 ], sep="" ) |
| command2 <- paste( command2, "')", sep="" ) |
| |
| print( paste( "Sending SQL command:", command2 ) ) |
| |
| fileData2 <- dbGetQuery( con, command2 ) |
| |
| # ********************************************************** |
| # STEP 2: Organize data. |
| # ********************************************************** |
| |
| print( "STEP 2: Organize data." ) |
| |
| # Create lists c() and organize data into their corresponding list. |
| print( "Sorting data." ) |
| if ( ncol( fileData2 ) == 0 ){ |
| avgs <- c( fileData1[ 'install_avg' ], fileData1[ 'withdraw_avg' ] ) |
| } else{ |
| colnames( fileData2 ) <- c( "date", "name", "date", "branch", "commit", "scale", "batch_size", "reroute_avg", "reroute_std" ) |
| avgs <- c( fileData1[ 'install_avg' ], fileData1[ 'withdraw_avg' ], fileData2[ 'reroute_avg' ] ) |
| } |
| |
| # Parse lists into data frames. |
| dataFrame <- melt( avgs ) # This is where reshape2 comes in. Avgs list is converted to data frame |
| |
| if ( ncol( fileData2 ) == 0 ){ |
| dataFrame$scale <- c( fileData1$scale, fileData1$scale ) # Add node scaling to the data frame. |
| dataFrame$stds <- c( fileData1$install_std, fileData1$withdraw_std ) |
| } else{ |
| dataFrame$scale <- c( fileData1$scale, fileData1$scale, fileData2$scale ) # Add node scaling to the data frame. |
| dataFrame$stds <- c( fileData1$install_std, fileData1$withdraw_std, fileData2$reroute_std ) |
| } |
| colnames( dataFrame ) <- c( "ms", "type", "scale", "stds" ) |
| |
| # Format data frame so that the data is in the same order as it appeared in the file. |
| dataFrame$type <- as.character( dataFrame$type ) |
| dataFrame$type <- factor( dataFrame$type, levels=unique( dataFrame$type ) ) |
| |
| dataFrame <- na.omit( dataFrame ) # Omit any data that doesn't exist |
| |
| print( "Data Frame Results:" ) |
| print( dataFrame ) |
| |
| # ********************************************************** |
| # STEP 3: Generate graphs. |
| # ********************************************************** |
| |
| print( "STEP 3: Generate graphs." ) |
| |
| # 1. Graph fundamental data is generated first. |
| # These are variables that apply to all of the graphs being generated, regardless of type. |
| # |
| # 2. Type specific graph data is generated. |
| # Data specific for the error bar and stacked bar graphs are generated. |
| # |
| # 3. Generate and save the graphs. |
| # Graphs are saved to the filename above, in the directory provided in command line args |
| |
| print( "Generating fundamental graph data." ) |
| |
| theme_set( theme_grey( base_size = 20 ) ) # set the default text size of the graph. |
| |
| # Calculate window to display graph, based on the lowest and highest points of the data. |
| if ( min( dataFrame$ms - dataFrame$stds ) < 0){ |
| yWindowMin <- min( dataFrame$ms - dataFrame$stds ) * 1.05 |
| } else { |
| yWindowMin <- 0 |
| } |
| yWindowMax <- max( dataFrame$ms + dataFrame$stds ) |
| |
| mainPlot <- ggplot( data = dataFrame, aes( x = scale, y = ms, ymin = ms - stds, ymax = ms + stds,fill = type ) ) |
| |
| # Formatting the plot |
| width <- 1.3 # Width of the bars. |
| xScaleConfig <- scale_x_continuous( breaks=c( 1, 3, 5, 7, 9) ) |
| yLimit <- ylim( yWindowMin, yWindowMax ) |
| xLabel <- xlab( "Scale" ) |
| yLabel <- ylab( "Latency (ms)" ) |
| fillLabel <- labs( fill="Type" ) |
| chartTitle <- "Intent Install, Withdraw, & Reroute Latencies" |
| if ( args[ 1 ] == "y" ){ |
| chartTitle <- paste( chartTitle, "w/ FlowObj" ) |
| } |
| chartTitle <- paste( chartTitle, "\nBatch Size =" ) |
| chartTitle <- paste( chartTitle, fileData1[ 1,'batch_size' ] ) |
| |
| theme <- theme( plot.title=element_text( hjust = 0.5, size = 28, face='bold' ) ) |
| |
| # Store plot configurations as 1 variable |
| fundamentalGraphData <- mainPlot + xScaleConfig + yLimit + xLabel + yLabel + fillLabel + theme |
| |
| |
| # Create the bar graph with error bars. |
| # geom_bar contains: |
| # - stat: data formatting (usually "identity") |
| # - width: the width of the bar types (declared above) |
| # geom_errorbar contains similar arguments as geom_bar. |
| print( "Generating bar graph with error bars." ) |
| barGraphFormat <- geom_bar( stat = "identity", width = width, position = "dodge" ) |
| errorBarFormat <- geom_errorbar( width = width, position = "dodge" ) |
| title <- ggtitle( chartTitle ) |
| result <- fundamentalGraphData + barGraphFormat + errorBarFormat + title |
| |
| # Save graph to file |
| print( paste( "Saving bar chart with error bars to", errBarOutputFile ) ) |
| ggsave( errBarOutputFile, width = 10, height = 6, dpi = 200 ) |
| print( paste( "Successfully wrote bar chart with error bars out to", errBarOutputFile ) ) |