blob: 87d7378a94133fc5f39648558309fec746ffa0ce [file] [log] [blame]
# TopoPerfNext
#
# Topology Performance test for ONOS-next
#
# andrew@onlab.us
#
# If your machine does not come with numpy
# run the following command:
# sudo apt-get install python-numpy python-scipy
import time
import sys
import os
import re
class TopoPerfNext:
def __init__( self ):
self.default = ''
def CASE1( self, main ):
"""
ONOS startup sequence
"""
import time
cell_name = main.params[ 'ENV' ][ 'cellName' ]
git_pull = main.params[ 'GIT' ][ 'autoPull' ]
checkout_branch = main.params[ 'GIT' ][ 'checkout' ]
ONOS1_ip = main.params[ 'CTRL' ][ 'ip1' ]
ONOS2_ip = main.params[ 'CTRL' ][ 'ip2' ]
ONOS3_ip = main.params[ 'CTRL' ][ 'ip3' ]
#### Hardcoded ONOS nodes particular to my env ####
ONOS4_ip = "10.128.174.4"
ONOS5_ip = "10.128.174.5"
ONOS6_ip = "10.128.174.6"
ONOS7_ip = "10.128.174.7"
#### ####
MN1_ip = main.params[ 'MN' ][ 'ip1' ]
BENCH_ip = main.params[ 'BENCH' ][ 'ip' ]
topo_cfg_file = main.params[ 'TEST' ][ 'topo_config_file' ]
topo_cfg_name = main.params[ 'TEST' ][ 'topo_config_name' ]
main.case( "Setting up test environment" )
main.log.info( "Copying topology event accumulator config" +
" to ONOS /package/etc" )
main.ONOSbench.handle.sendline( "cp ~/" +
topo_cfg_file +
" ~/ONOS/tools/package/etc/" +
topo_cfg_name )
main.ONOSbench.handle.expect( "\$" )
main.log.report( "Setting up test environment" )
main.step( "Cleaning previously installed ONOS if any" )
main.ONOSbench.onos_uninstall( node_ip=ONOS4_ip )
main.ONOSbench.onos_uninstall( node_ip=ONOS5_ip )
main.ONOSbench.onos_uninstall( node_ip=ONOS6_ip )
main.ONOSbench.onos_uninstall( node_ip=ONOS7_ip )
main.step( "Creating cell file" )
cell_file_result = main.ONOSbench.create_cell_file(
BENCH_ip, cell_name, MN1_ip, "onos-core,onos-app-metrics",
ONOS1_ip, ONOS2_ip, ONOS3_ip )
main.step( "Applying cell file to environment" )
cell_apply_result = main.ONOSbench.set_cell( cell_name )
verify_cell_result = main.ONOSbench.verify_cell()
# NOTE: This step may be removed after proper
# copy cat log functionality
main.step( "Removing raft/copy-cat logs from ONOS nodes" )
main.ONOSbench.onos_remove_raft_logs()
time.sleep( 30 )
main.step( "Git checkout and pull " + checkout_branch )
if git_pull == 'on':
checkout_result = \
main.ONOSbench.git_checkout( checkout_branch )
pull_result = main.ONOSbench.git_pull()
else:
checkout_result = main.TRUE
pull_result = main.TRUE
main.log.info( "Skipped git checkout and pull" )
# TODO: Uncomment when wiki posting works
#main.log.report( "Commit information - " )
# main.ONOSbench.get_version( report=True )
main.step( "Using mvn clean & install" )
#mvn_result = main.ONOSbench.clean_install()
mvn_result = main.TRUE
main.step( "Set cell for ONOS cli env" )
main.ONOS1cli.set_cell( cell_name )
main.ONOS2cli.set_cell( cell_name )
main.ONOS3cli.set_cell( cell_name )
main.step( "Creating ONOS package" )
package_result = main.ONOSbench.onos_package()
main.step( "Installing ONOS package" )
install1_result = main.ONOSbench.onos_install( node=ONOS1_ip )
install2_result = main.ONOSbench.onos_install( node=ONOS2_ip )
install3_result = main.ONOSbench.onos_install( node=ONOS3_ip )
time.sleep( 10 )
main.step( "Start onos cli" )
cli1 = main.ONOS1cli.start_onos_cli( ONOS1_ip )
cli2 = main.ONOS2cli.start_onos_cli( ONOS2_ip )
cli3 = main.ONOS3cli.start_onos_cli( ONOS3_ip )
utilities.assert_equals( expect=main.TRUE,
actual=cell_file_result and cell_apply_result and
verify_cell_result and checkout_result and
pull_result and mvn_result and
install1_result and install2_result and
install3_result,
onpass="Test Environment setup successful",
onfail="Failed to setup test environment" )
def CASE2( self, main ):
"""
Assign s1 to ONOS1 and measure latency
There are 4 levels of latency measurements to this test:
1 ) End-to-end measurement: Complete end-to-end measurement
from TCP ( SYN/ACK ) handshake to Graph change
2 ) OFP-to-graph measurement: 'ONOS processing' snippet of
measurement from OFP Vendor message to Graph change
3 ) OFP-to-device measurement: 'ONOS processing without
graph change' snippet of measurement from OFP vendor
message to Device change timestamp
4 ) T0-to-device measurement: Measurement that includes
the switch handshake to devices timestamp without
the graph view change. ( TCP handshake -> Device
change )
"""
import time
import subprocess
import json
import requests
import os
import numpy
ONOS1_ip = main.params[ 'CTRL' ][ 'ip1' ]
ONOS2_ip = main.params[ 'CTRL' ][ 'ip2' ]
ONOS3_ip = main.params[ 'CTRL' ][ 'ip3' ]
ONOS_user = main.params[ 'CTRL' ][ 'user' ]
default_sw_port = main.params[ 'CTRL' ][ 'port1' ]
# Number of iterations of case
num_iter = main.params[ 'TEST' ][ 'numIter' ]
# Number of first 'x' iterations to ignore:
iter_ignore = int( main.params[ 'TEST' ][ 'iterIgnore' ] )
# Timestamp 'keys' for json metrics output.
# These are subject to change, hence moved into params
deviceTimestamp = main.params[ 'JSON' ][ 'deviceTimestamp' ]
graphTimestamp = main.params[ 'JSON' ][ 'graphTimestamp' ]
debug_mode = main.params[ 'TEST' ][ 'debugMode' ]
onos_log = main.params[ 'TEST' ][ 'onosLogFile' ]
# Threshold for the test
threshold_str = main.params[ 'TEST' ][ 'singleSwThreshold' ]
threshold_obj = threshold_str.split( "," )
threshold_min = int( threshold_obj[ 0 ] )
threshold_max = int( threshold_obj[ 1 ] )
# List of switch add latency collected from
# all iterations
latency_end_to_end_list = []
latency_ofp_to_graph_list = []
latency_ofp_to_device_list = []
latency_t0_to_device_list = []
latency_tcp_to_ofp_list = []
# Directory/file to store tshark results
tshark_of_output = "/tmp/tshark_of_topo.txt"
tshark_tcp_output = "/tmp/tshark_tcp_topo.txt"
# String to grep in tshark output
tshark_tcp_string = "TCP 74 " + default_sw_port
tshark_of_string = "OFP 86 Vendor"
# Initialize assertion to TRUE
assertion = main.TRUE
local_time = time.strftime( '%x %X' )
local_time = local_time.replace( "/", "" )
local_time = local_time.replace( " ", "_" )
local_time = local_time.replace( ":", "" )
if debug_mode == 'on':
main.ONOS1.tshark_pcap( "eth0",
"/tmp/single_sw_lat_pcap_" + local_time )
main.log.info( "TEST" )
main.log.report( "Latency of adding one switch to controller" )
main.log.report(
"First " +
str( iter_ignore ) +
" iterations ignored" +
" for jvm warmup time" )
main.log.report( "Total iterations of test: " + str( num_iter ) )
for i in range( 0, int( num_iter ) ):
main.log.info( "Starting tshark capture" )
#* TCP [ ACK, SYN ] is used as t0_a, the
# very first "exchange" between ONOS and
# the switch for end-to-end measurement
#* OFP [ Stats Reply ] is used for t0_b
# the very last OFP message between ONOS
# and the switch for ONOS measurement
main.ONOS1.tshark_grep( tshark_tcp_string,
tshark_tcp_output )
main.ONOS1.tshark_grep( tshark_of_string,
tshark_of_output )
# Wait and ensure tshark is started and
# capturing
time.sleep( 10 )
main.log.info( "Assigning s1 to controller" )
main.Mininet1.assign_sw_controller(
sw="1",
ip1=ONOS1_ip,
port1=default_sw_port )
# Wait and ensure switch is assigned
# before stopping tshark
time.sleep( 30 )
main.log.info( "Stopping all Tshark processes" )
main.ONOS1.stop_tshark()
# tshark output is saved in ONOS. Use subprocess
# to copy over files to TestON for parsing
main.log.info( "Copying over tshark files" )
# TCP CAPTURE ****
# Copy the tshark output from ONOS machine to
# TestON machine in tshark_tcp_output directory>file
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_tcp_output + " /tmp/" )
tcp_file = open( tshark_tcp_output, 'r' )
temp_text = tcp_file.readline()
temp_text = temp_text.split( " " )
main.log.info( "Object read in from TCP capture: " +
str( temp_text ) )
if len( temp_text ) > 1:
t0_tcp = float( temp_text[ 1 ] ) * 1000.0
else:
main.log.error( "Tshark output file for TCP" +
" returned unexpected results" )
t0_tcp = 0
assertion = main.FALSE
tcp_file.close()
#****************
# OF CAPTURE ****
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_of_output + " /tmp/" )
of_file = open( tshark_of_output, 'r' )
line_ofp = ""
# Read until last line of file
while True:
temp_text = of_file.readline()
if temp_text != '':
line_ofp = temp_text
else:
break
obj = line_ofp.split( " " )
main.log.info( "Object read in from OFP capture: " +
str( line_ofp ) )
if len( line_ofp ) > 1:
t0_ofp = float( obj[ 1 ] ) * 1000.0
else:
main.log.error( "Tshark output file for OFP" +
" returned unexpected results" )
t0_ofp = 0
assertion = main.FALSE
of_file.close()
#****************
json_str_1 = main.ONOS1cli.topology_events_metrics()
json_str_2 = main.ONOS2cli.topology_events_metrics()
json_str_3 = main.ONOS3cli.topology_events_metrics()
json_obj_1 = json.loads( json_str_1 )
json_obj_2 = json.loads( json_str_2 )
json_obj_3 = json.loads( json_str_3 )
# Obtain graph timestamp. This timestsamp captures
# the epoch time at which the topology graph was updated.
graph_timestamp_1 = \
json_obj_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_obj_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_obj_3[ graphTimestamp ][ 'value' ]
# Obtain device timestamp. This timestamp captures
# the epoch time at which the device event happened
device_timestamp_1 = \
json_obj_1[ deviceTimestamp ][ 'value' ]
device_timestamp_2 = \
json_obj_2[ deviceTimestamp ][ 'value' ]
device_timestamp_3 = \
json_obj_3[ deviceTimestamp ][ 'value' ]
# t0 to device processing latency
delta_device_1 = int( device_timestamp_1 ) - int( t0_tcp )
delta_device_2 = int( device_timestamp_2 ) - int( t0_tcp )
delta_device_3 = int( device_timestamp_3 ) - int( t0_tcp )
# Get average of delta from all instances
avg_delta_device = \
( int( delta_device_1 ) +
int( delta_device_2 ) +
int( delta_device_3 ) ) / 3
# Ensure avg delta meets the threshold before appending
if avg_delta_device > 0.0 and avg_delta_device < 10000\
and int( i ) > iter_ignore:
latency_t0_to_device_list.append( avg_delta_device )
else:
main.log.info(
"Results for t0-to-device ignored" +
"due to excess in threshold / warmup iteration." )
# t0 to graph processing latency ( end-to-end )
delta_graph_1 = int( graph_timestamp_1 ) - int( t0_tcp )
delta_graph_2 = int( graph_timestamp_2 ) - int( t0_tcp )
delta_graph_3 = int( graph_timestamp_3 ) - int( t0_tcp )
# Get average of delta from all instances
avg_delta_graph = \
( int( delta_graph_1 ) +
int( delta_graph_2 ) +
int( delta_graph_3 ) ) / 3
# Ensure avg delta meets the threshold before appending
if avg_delta_graph > 0.0 and avg_delta_graph < 10000\
and int( i ) > iter_ignore:
latency_end_to_end_list.append( avg_delta_graph )
else:
main.log.info( "Results for end-to-end ignored" +
"due to excess in threshold" )
# ofp to graph processing latency ( ONOS processing )
delta_ofp_graph_1 = int( graph_timestamp_1 ) - int( t0_ofp )
delta_ofp_graph_2 = int( graph_timestamp_2 ) - int( t0_ofp )
delta_ofp_graph_3 = int( graph_timestamp_3 ) - int( t0_ofp )
avg_delta_ofp_graph = \
( int( delta_ofp_graph_1 ) +
int( delta_ofp_graph_2 ) +
int( delta_ofp_graph_3 ) ) / 3
if avg_delta_ofp_graph > threshold_min \
and avg_delta_ofp_graph < threshold_max\
and int( i ) > iter_ignore:
latency_ofp_to_graph_list.append( avg_delta_ofp_graph )
elif avg_delta_ofp_graph > ( -10 ) and \
avg_delta_ofp_graph < 0.0 and\
int( i ) > iter_ignore:
main.log.info( "Sub-millisecond result likely; " +
"negative result was rounded to 0" )
# NOTE: Current metrics framework does not
# support sub-millisecond accuracy. Therefore,
# if the result is negative, we can reasonably
# conclude sub-millisecond results and just
# append the best rounded effort - 0 ms.
latency_ofp_to_graph_list.append( 0 )
else:
main.log.info( "Results for ofp-to-graph " +
"ignored due to excess in threshold" )
# ofp to device processing latency ( ONOS processing )
delta_ofp_device_1 = float( device_timestamp_1 ) - float( t0_ofp )
delta_ofp_device_2 = float( device_timestamp_2 ) - float( t0_ofp )
delta_ofp_device_3 = float( device_timestamp_3 ) - float( t0_ofp )
avg_delta_ofp_device = \
( float( delta_ofp_device_1 ) +
float( delta_ofp_device_2 ) +
float( delta_ofp_device_3 ) ) / 3
# NOTE: ofp - delta measurements are occasionally negative
# due to system time misalignment.
latency_ofp_to_device_list.append( avg_delta_ofp_device )
delta_ofp_tcp = int( t0_ofp ) - int( t0_tcp )
if delta_ofp_tcp > threshold_min \
and delta_ofp_tcp < threshold_max and\
int( i ) > iter_ignore:
latency_tcp_to_ofp_list.append( delta_ofp_tcp )
else:
main.log.info( "Results fo tcp-to-ofp " +
"ignored due to excess in threshold" )
# TODO:
# Fetch logs upon threshold excess
main.log.info( "ONOS1 delta end-to-end: " +
str( delta_graph_1 ) + " ms" )
main.log.info( "ONOS2 delta end-to-end: " +
str( delta_graph_2 ) + " ms" )
main.log.info( "ONOS3 delta end-to-end: " +
str( delta_graph_3 ) + " ms" )
main.log.info( "ONOS1 delta OFP - graph: " +
str( delta_ofp_graph_1 ) + " ms" )
main.log.info( "ONOS2 delta OFP - graph: " +
str( delta_ofp_graph_2 ) + " ms" )
main.log.info( "ONOS3 delta OFP - graph: " +
str( delta_ofp_graph_3 ) + " ms" )
main.log.info( "ONOS1 delta device - t0: " +
str( delta_device_1 ) + " ms" )
main.log.info( "ONOS2 delta device - t0: " +
str( delta_device_2 ) + " ms" )
main.log.info( "ONOS3 delta device - t0: " +
str( delta_device_3 ) + " ms" )
main.log.info( "TCP to OFP delta: " +
str( delta_ofp_tcp ) + " ms" )
# main.log.info( "ONOS1 delta OFP - device: "+
# str( delta_ofp_device_1 ) + " ms" )
# main.log.info( "ONOS2 delta OFP - device: "+
# str( delta_ofp_device_2 ) + " ms" )
# main.log.info( "ONOS3 delta OFP - device: "+
# str( delta_ofp_device_3 ) + " ms" )
main.step( "Remove switch from controller" )
main.Mininet1.delete_sw_controller( "s1" )
time.sleep( 5 )
# END of for loop iteration
# If there is at least 1 element in each list,
# pass the test case
if len( latency_end_to_end_list ) > 0 and\
len( latency_ofp_to_graph_list ) > 0 and\
len( latency_ofp_to_device_list ) > 0 and\
len( latency_t0_to_device_list ) > 0 and\
len( latency_tcp_to_ofp_list ) > 0:
assertion = main.TRUE
elif len( latency_end_to_end_list ) == 0:
# The appending of 0 here is to prevent
# the min,max,sum functions from failing
# below
latency_end_to_end_list.append( 0 )
assertion = main.FALSE
elif len( latency_ofp_to_graph_list ) == 0:
latency_ofp_to_graph_list.append( 0 )
assertion = main.FALSE
elif len( latency_ofp_to_device_list ) == 0:
latency_ofp_to_device_list.append( 0 )
assertion = main.FALSE
elif len( latency_t0_to_device_list ) == 0:
latency_t0_to_device_list.append( 0 )
assertion = main.FALSE
elif len( latency_tcp_to_ofp_list ) == 0:
latency_tcp_to_ofp_list.append( 0 )
assertion = main.FALSE
# Calculate min, max, avg of latency lists
latency_end_to_end_max = \
int( max( latency_end_to_end_list ) )
latency_end_to_end_min = \
int( min( latency_end_to_end_list ) )
latency_end_to_end_avg = \
( int( sum( latency_end_to_end_list ) ) /
len( latency_end_to_end_list ) )
latency_end_to_end_std_dev = \
str( round( numpy.std( latency_end_to_end_list ), 1 ) )
latency_ofp_to_graph_max = \
int( max( latency_ofp_to_graph_list ) )
latency_ofp_to_graph_min = \
int( min( latency_ofp_to_graph_list ) )
latency_ofp_to_graph_avg = \
( int( sum( latency_ofp_to_graph_list ) ) /
len( latency_ofp_to_graph_list ) )
latency_ofp_to_graph_std_dev = \
str( round( numpy.std( latency_ofp_to_graph_list ), 1 ) )
latency_ofp_to_device_max = \
int( max( latency_ofp_to_device_list ) )
latency_ofp_to_device_min = \
int( min( latency_ofp_to_device_list ) )
latency_ofp_to_device_avg = \
( int( sum( latency_ofp_to_device_list ) ) /
len( latency_ofp_to_device_list ) )
latency_ofp_to_device_std_dev = \
str( round( numpy.std( latency_ofp_to_device_list ), 1 ) )
latency_t0_to_device_max = \
int( max( latency_t0_to_device_list ) )
latency_t0_to_device_min = \
int( min( latency_t0_to_device_list ) )
latency_t0_to_device_avg = \
( int( sum( latency_t0_to_device_list ) ) /
len( latency_t0_to_device_list ) )
latency_ofp_to_device_std_dev = \
str( round( numpy.std( latency_t0_to_device_list ), 1 ) )
latency_tcp_to_ofp_max = \
int( max( latency_tcp_to_ofp_list ) )
latency_tcp_to_ofp_min = \
int( min( latency_tcp_to_ofp_list ) )
latency_tcp_to_ofp_avg = \
( int( sum( latency_tcp_to_ofp_list ) ) /
len( latency_tcp_to_ofp_list ) )
latency_tcp_to_ofp_std_dev = \
str( round( numpy.std( latency_tcp_to_ofp_list ), 1 ) )
main.log.report(
"Switch add - End-to-end latency: " +
"Avg: " +
str( latency_end_to_end_avg ) +
" ms " +
"Std Deviation: " +
latency_end_to_end_std_dev +
" ms" )
main.log.report(
"Switch add - OFP-to-Graph latency: " +
"Note: results are not accurate to sub-millisecond. " +
"Any sub-millisecond results are rounded to 0 ms. " )
main.log.report(
"Avg: " +
str( latency_ofp_to_graph_avg ) +
" ms " +
"Std Deviation: " +
latency_ofp_to_graph_std_dev +
" ms" )
main.log.report(
"Switch add - TCP-to-OFP latency: " +
"Avg: " +
str( latency_tcp_to_ofp_avg ) +
" ms " +
"Std Deviation: " +
latency_tcp_to_ofp_std_dev +
" ms" )
if debug_mode == 'on':
main.ONOS1.cp_logs_to_dir( "/opt/onos/log/karaf.log",
"/tmp/", copy_file_name="sw_lat_karaf" )
utilities.assert_equals( expect=main.TRUE, actual=assertion,
onpass="Switch latency test successful",
onfail="Switch latency test failed" )
def CASE3( self, main ):
"""
Bring port up / down and measure latency.
Port enable / disable is simulated by ifconfig up / down
In ONOS-next, we must ensure that the port we are
manipulating is connected to another switch with a valid
connection. Otherwise, graph view will not be updated.
"""
import time
import subprocess
import os
import requests
import json
import numpy
ONOS1_ip = main.params[ 'CTRL' ][ 'ip1' ]
ONOS2_ip = main.params[ 'CTRL' ][ 'ip2' ]
ONOS3_ip = main.params[ 'CTRL' ][ 'ip3' ]
ONOS_user = main.params[ 'CTRL' ][ 'user' ]
default_sw_port = main.params[ 'CTRL' ][ 'port1' ]
assertion = main.TRUE
# Number of iterations of case
num_iter = main.params[ 'TEST' ][ 'numIter' ]
# Timestamp 'keys' for json metrics output.
# These are subject to change, hence moved into params
deviceTimestamp = main.params[ 'JSON' ][ 'deviceTimestamp' ]
graphTimestamp = main.params[ 'JSON' ][ 'graphTimestamp' ]
debug_mode = main.params[ 'TEST' ][ 'debugMode' ]
local_time = time.strftime( '%x %X' )
local_time = local_time.replace( "/", "" )
local_time = local_time.replace( " ", "_" )
local_time = local_time.replace( ":", "" )
if debug_mode == 'on':
main.ONOS1.tshark_pcap( "eth0",
"/tmp/port_lat_pcap_" + local_time )
# Threshold for this test case
up_threshold_str = main.params[ 'TEST' ][ 'portUpThreshold' ]
down_threshold_str = main.params[ 'TEST' ][ 'portDownThreshold' ]
up_threshold_obj = up_threshold_str.split( "," )
down_threshold_obj = down_threshold_str.split( "," )
up_threshold_min = int( up_threshold_obj[ 0 ] )
up_threshold_max = int( up_threshold_obj[ 1 ] )
down_threshold_min = int( down_threshold_obj[ 0 ] )
down_threshold_max = int( down_threshold_obj[ 1 ] )
# NOTE: Some hardcoded variables you may need to configure
# besides the params
tshark_port_status = "OFP 130 Port Status"
tshark_port_up = "/tmp/tshark_port_up.txt"
tshark_port_down = "/tmp/tshark_port_down.txt"
interface_config = "s1-eth1"
main.log.report( "Port enable / disable latency" )
main.log.report( "Simulated by ifconfig up / down" )
main.log.report( "Total iterations of test: " + str( num_iter ) )
main.step( "Assign switches s1 and s2 to controller 1" )
main.Mininet1.assign_sw_controller( sw="1", ip1=ONOS1_ip,
port1=default_sw_port )
main.Mininet1.assign_sw_controller( sw="2", ip1=ONOS1_ip,
port1=default_sw_port )
# Give enough time for metrics to propagate the
# assign controller event. Otherwise, these events may
# carry over to our measurements
time.sleep( 15 )
port_up_device_to_ofp_list = []
port_up_graph_to_ofp_list = []
port_down_device_to_ofp_list = []
port_down_graph_to_ofp_list = []
for i in range( 0, int( num_iter ) ):
main.step( "Starting wireshark capture for port status down" )
main.ONOS1.tshark_grep( tshark_port_status,
tshark_port_down )
time.sleep( 5 )
# Disable interface that is connected to switch 2
main.step( "Disable port: " + interface_config )
main.Mininet1.handle.sendline( "sh ifconfig " +
interface_config + " down" )
main.Mininet1.handle.expect( "mininet>" )
time.sleep( 3 )
main.ONOS1.tshark_stop()
main.step( "Obtain t1 by metrics call" )
json_str_up_1 = main.ONOS1cli.topology_events_metrics()
json_str_up_2 = main.ONOS2cli.topology_events_metrics()
json_str_up_3 = main.ONOS3cli.topology_events_metrics()
json_obj_1 = json.loads( json_str_up_1 )
json_obj_2 = json.loads( json_str_up_2 )
json_obj_3 = json.loads( json_str_up_3 )
# Copy tshark output file from ONOS to TestON instance
#/tmp directory
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_port_down + " /tmp/" )
f_port_down = open( tshark_port_down, 'r' )
# Get first line of port down event from tshark
f_line = f_port_down.readline()
obj_down = f_line.split( " " )
if len( f_line ) > 0:
timestamp_begin_pt_down = int( float( obj_down[ 1 ] ) * 1000 )
main.log.info( "Port down begin timestamp: " +
str( timestamp_begin_pt_down ) )
else:
main.log.info( "Tshark output file returned unexpected" +
" results: " + str( obj_down ) )
timestamp_begin_pt_down = 0
f_port_down.close()
main.log.info( "TEST tshark obj: " + str( obj_down ) )
time.sleep( 3 )
# Obtain graph timestamp. This timestsamp captures
# the epoch time at which the topology graph was updated.
graph_timestamp_1 = \
json_obj_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_obj_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_obj_3[ graphTimestamp ][ 'value' ]
main.log.info( "TEST graph timestamp ONOS1: " +
str( graph_timestamp_1 ) )
# Obtain device timestamp. This timestamp captures
# the epoch time at which the device event happened
device_timestamp_1 = \
json_obj_1[ deviceTimestamp ][ 'value' ]
device_timestamp_2 = \
json_obj_2[ deviceTimestamp ][ 'value' ]
device_timestamp_3 = \
json_obj_3[ deviceTimestamp ][ 'value' ]
# Get delta between graph event and OFP
pt_down_graph_to_ofp_1 = int( graph_timestamp_1 ) -\
int( timestamp_begin_pt_down )
pt_down_graph_to_ofp_2 = int( graph_timestamp_2 ) -\
int( timestamp_begin_pt_down )
pt_down_graph_to_ofp_3 = int( graph_timestamp_3 ) -\
int( timestamp_begin_pt_down )
# Get delta between device event and OFP
pt_down_device_to_ofp_1 = int( device_timestamp_1 ) -\
int( timestamp_begin_pt_down )
pt_down_device_to_ofp_2 = int( device_timestamp_2 ) -\
int( timestamp_begin_pt_down )
pt_down_device_to_ofp_3 = int( device_timestamp_3 ) -\
int( timestamp_begin_pt_down )
# Caluclate average across clusters
pt_down_graph_to_ofp_avg =\
( int( pt_down_graph_to_ofp_1 ) +
int( pt_down_graph_to_ofp_2 ) +
int( pt_down_graph_to_ofp_3 ) ) / 3
pt_down_device_to_ofp_avg = \
( int( pt_down_device_to_ofp_1 ) +
int( pt_down_device_to_ofp_2 ) +
int( pt_down_device_to_ofp_3 ) ) / 3
if pt_down_graph_to_ofp_avg > down_threshold_min and \
pt_down_graph_to_ofp_avg < down_threshold_max:
port_down_graph_to_ofp_list.append(
pt_down_graph_to_ofp_avg )
main.log.info( "Port down: graph to ofp avg: " +
str( pt_down_graph_to_ofp_avg ) + " ms" )
else:
main.log.info( "Average port down graph-to-ofp result" +
" exceeded the threshold: " +
str( pt_down_graph_to_ofp_avg ) )
if pt_down_device_to_ofp_avg > 0 and \
pt_down_device_to_ofp_avg < 1000:
port_down_device_to_ofp_list.append(
pt_down_device_to_ofp_avg )
main.log.info( "Port down: device to ofp avg: " +
str( pt_down_device_to_ofp_avg ) + " ms" )
else:
main.log.info( "Average port down device-to-ofp result" +
" exceeded the threshold: " +
str( pt_down_device_to_ofp_avg ) )
# Port up events
main.step( "Enable port and obtain timestamp" )
main.step( "Starting wireshark capture for port status up" )
main.ONOS1.tshark_grep( tshark_port_status, tshark_port_up )
time.sleep( 5 )
main.Mininet1.handle.sendline( "sh ifconfig " +
interface_config + " up" )
main.Mininet1.handle.expect( "mininet>" )
# Allow time for tshark to capture event
time.sleep( 3 )
main.ONOS1.tshark_stop()
# Obtain metrics shortly afterwards
# This timestsamp captures
# the epoch time at which the topology graph was updated.
main.step( "Obtain t1 by REST call" )
json_str_up_1 = main.ONOS1cli.topology_events_metrics()
json_str_up_2 = main.ONOS2cli.topology_events_metrics()
json_str_up_3 = main.ONOS3cli.topology_events_metrics()
json_obj_1 = json.loads( json_str_up_1 )
json_obj_2 = json.loads( json_str_up_2 )
json_obj_3 = json.loads( json_str_up_3 )
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_port_up + " /tmp/" )
f_port_up = open( tshark_port_up, 'r' )
f_line = f_port_up.readline()
obj_up = f_line.split( " " )
if len( f_line ) > 0:
timestamp_begin_pt_up = int( float( obj_up[ 1 ] ) * 1000 )
main.log.info( "Port up begin timestamp: " +
str( timestamp_begin_pt_up ) )
else:
main.log.info( "Tshark output file returned unexpected" +
" results." )
timestamp_begin_pt_up = 0
f_port_up.close()
graph_timestamp_1 = \
json_obj_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_obj_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_obj_3[ graphTimestamp ][ 'value' ]
# Obtain device timestamp. This timestamp captures
# the epoch time at which the device event happened
device_timestamp_1 = \
json_obj_1[ deviceTimestamp ][ 'value' ]
device_timestamp_2 = \
json_obj_2[ deviceTimestamp ][ 'value' ]
device_timestamp_3 = \
json_obj_3[ deviceTimestamp ][ 'value' ]
# Get delta between graph event and OFP
pt_up_graph_to_ofp_1 = int( graph_timestamp_1 ) -\
int( timestamp_begin_pt_up )
pt_up_graph_to_ofp_2 = int( graph_timestamp_2 ) -\
int( timestamp_begin_pt_up )
pt_up_graph_to_ofp_3 = int( graph_timestamp_3 ) -\
int( timestamp_begin_pt_up )
# Get delta between device event and OFP
pt_up_device_to_ofp_1 = int( device_timestamp_1 ) -\
int( timestamp_begin_pt_up )
pt_up_device_to_ofp_2 = int( device_timestamp_2 ) -\
int( timestamp_begin_pt_up )
pt_up_device_to_ofp_3 = int( device_timestamp_3 ) -\
int( timestamp_begin_pt_up )
main.log.info( "ONOS1 delta G2O: " + str( pt_up_graph_to_ofp_1 ) )
main.log.info( "ONOS2 delta G2O: " + str( pt_up_graph_to_ofp_2 ) )
main.log.info( "ONOS3 delta G2O: " + str( pt_up_graph_to_ofp_3 ) )
main.log.info( "ONOS1 delta D2O: " + str( pt_up_device_to_ofp_1 ) )
main.log.info( "ONOS2 delta D2O: " + str( pt_up_device_to_ofp_2 ) )
main.log.info( "ONOS3 delta D2O: " + str( pt_up_device_to_ofp_3 ) )
pt_up_graph_to_ofp_avg = \
( int( pt_up_graph_to_ofp_1 ) +
int( pt_up_graph_to_ofp_2 ) +
int( pt_up_graph_to_ofp_3 ) ) / 3
pt_up_device_to_ofp_avg = \
( int( pt_up_device_to_ofp_1 ) +
int( pt_up_device_to_ofp_2 ) +
int( pt_up_device_to_ofp_3 ) ) / 3
if pt_up_graph_to_ofp_avg > up_threshold_min and \
pt_up_graph_to_ofp_avg < up_threshold_max:
port_up_graph_to_ofp_list.append(
pt_up_graph_to_ofp_avg )
main.log.info( "Port down: graph to ofp avg: " +
str( pt_up_graph_to_ofp_avg ) + " ms" )
else:
main.log.info( "Average port up graph-to-ofp result" +
" exceeded the threshold: " +
str( pt_up_graph_to_ofp_avg ) )
if pt_up_device_to_ofp_avg > up_threshold_min and \
pt_up_device_to_ofp_avg < up_threshold_max:
port_up_device_to_ofp_list.append(
pt_up_device_to_ofp_avg )
main.log.info( "Port up: device to ofp avg: " +
str( pt_up_device_to_ofp_avg ) + " ms" )
else:
main.log.info( "Average port up device-to-ofp result" +
" exceeded the threshold: " +
str( pt_up_device_to_ofp_avg ) )
# END ITERATION FOR LOOP
# Check all list for latency existence and set assertion
if ( port_down_graph_to_ofp_list and port_down_device_to_ofp_list
and port_up_graph_to_ofp_list and port_up_device_to_ofp_list ):
assertion = main.TRUE
# Calculate and report latency measurements
port_down_graph_to_ofp_min = min( port_down_graph_to_ofp_list )
port_down_graph_to_ofp_max = max( port_down_graph_to_ofp_list )
port_down_graph_to_ofp_avg = \
( sum( port_down_graph_to_ofp_list ) /
len( port_down_graph_to_ofp_list ) )
port_down_graph_to_ofp_std_dev = \
str( round( numpy.std( port_down_graph_to_ofp_list ), 1 ) )
main.log.report(
"Port down graph-to-ofp " +
"Avg: " +
str( port_down_graph_to_ofp_avg ) +
" ms " +
"Std Deviation: " +
port_down_graph_to_ofp_std_dev +
" ms" )
port_down_device_to_ofp_min = min( port_down_device_to_ofp_list )
port_down_device_to_ofp_max = max( port_down_device_to_ofp_list )
port_down_device_to_ofp_avg = \
( sum( port_down_device_to_ofp_list ) /
len( port_down_device_to_ofp_list ) )
port_down_device_to_ofp_std_dev = \
str( round( numpy.std( port_down_device_to_ofp_list ), 1 ) )
main.log.report(
"Port down device-to-ofp " +
"Avg: " +
str( port_down_device_to_ofp_avg ) +
" ms " +
"Std Deviation: " +
port_down_device_to_ofp_std_dev +
" ms" )
port_up_graph_to_ofp_min = min( port_up_graph_to_ofp_list )
port_up_graph_to_ofp_max = max( port_up_graph_to_ofp_list )
port_up_graph_to_ofp_avg = \
( sum( port_up_graph_to_ofp_list ) /
len( port_up_graph_to_ofp_list ) )
port_up_graph_to_ofp_std_dev = \
str( round( numpy.std( port_up_graph_to_ofp_list ), 1 ) )
main.log.report(
"Port up graph-to-ofp " +
"Avg: " +
str( port_up_graph_to_ofp_avg ) +
" ms " +
"Std Deviation: " +
port_up_graph_to_ofp_std_dev +
" ms" )
port_up_device_to_ofp_min = min( port_up_device_to_ofp_list )
port_up_device_to_ofp_max = max( port_up_device_to_ofp_list )
port_up_device_to_ofp_avg = \
( sum( port_up_device_to_ofp_list ) /
len( port_up_device_to_ofp_list ) )
port_up_device_to_ofp_std_dev = \
str( round( numpy.std( port_up_device_to_ofp_list ), 1 ) )
main.log.report(
"Port up device-to-ofp " +
"Avg: " +
str( port_up_device_to_ofp_avg ) +
" ms " +
"Std Deviation: " +
port_up_device_to_ofp_std_dev +
" ms" )
utilities.assert_equals(
expect=main.TRUE,
actual=assertion,
onpass="Port discovery latency calculation successful",
onfail="Port discovery test failed" )
def CASE4( self, main ):
"""
Link down event using loss rate 100%
Important:
Use a simple 2 switch topology with 1 link between
the two switches. Ensure that mac addresses of the
switches are 1 / 2 respectively
"""
import time
import subprocess
import os
import requests
import json
import numpy
ONOS1_ip = main.params[ 'CTRL' ][ 'ip1' ]
ONOS2_ip = main.params[ 'CTRL' ][ 'ip2' ]
ONOS3_ip = main.params[ 'CTRL' ][ 'ip3' ]
ONOS_user = main.params[ 'CTRL' ][ 'user' ]
default_sw_port = main.params[ 'CTRL' ][ 'port1' ]
# Number of iterations of case
num_iter = main.params[ 'TEST' ][ 'numIter' ]
# Timestamp 'keys' for json metrics output.
# These are subject to change, hence moved into params
deviceTimestamp = main.params[ 'JSON' ][ 'deviceTimestamp' ]
linkTimestamp = main.params[ 'JSON' ][ 'linkTimestamp' ]
graphTimestamp = main.params[ 'JSON' ][ 'graphTimestamp' ]
debug_mode = main.params[ 'TEST' ][ 'debugMode' ]
local_time = time.strftime( '%x %X' )
local_time = local_time.replace( "/", "" )
local_time = local_time.replace( " ", "_" )
local_time = local_time.replace( ":", "" )
if debug_mode == 'on':
main.ONOS1.tshark_pcap( "eth0",
"/tmp/link_lat_pcap_" + local_time )
# Threshold for this test case
up_threshold_str = main.params[ 'TEST' ][ 'linkUpThreshold' ]
down_threshold_str = main.params[ 'TEST' ][ 'linkDownThreshold' ]
up_threshold_obj = up_threshold_str.split( "," )
down_threshold_obj = down_threshold_str.split( "," )
up_threshold_min = int( up_threshold_obj[ 0 ] )
up_threshold_max = int( up_threshold_obj[ 1 ] )
down_threshold_min = int( down_threshold_obj[ 0 ] )
down_threshold_max = int( down_threshold_obj[ 1 ] )
assertion = main.TRUE
# Link event timestamp to system time list
link_down_link_to_system_list = []
link_up_link_to_system_list = []
# Graph event timestamp to system time list
link_down_graph_to_system_list = []
link_up_graph_to_system_list = []
main.log.report( "Link up / down discovery latency between " +
"two switches" )
main.log.report( "Simulated by setting loss-rate 100%" )
main.log.report( "'tc qdisc add dev <intfs> root netem loss 100%'" )
main.log.report( "Total iterations of test: " + str( num_iter ) )
main.step( "Assign all switches" )
main.Mininet1.assign_sw_controller(
sw="1",
ip1=ONOS1_ip,
port1=default_sw_port )
main.Mininet1.assign_sw_controller(
sw="2",
ip1=ONOS1_ip,
port1=default_sw_port )
main.step( "Verifying switch assignment" )
result_s1 = main.Mininet1.get_sw_controller( sw="s1" )
result_s2 = main.Mininet1.get_sw_controller( sw="s2" )
# Allow time for events to finish before taking measurements
time.sleep( 10 )
link_down1 = False
link_down2 = False
link_down3 = False
# Start iteration of link event test
for i in range( 0, int( num_iter ) ):
main.step( "Getting initial system time as t0" )
timestamp_link_down_t0 = time.time() * 1000
# Link down is simulated by 100% loss rate using traffic
# control command
main.Mininet1.handle.sendline(
"sh tc qdisc add dev s1-eth1 root netem loss 100%" )
# TODO: Iterate through 'links' command to verify that
# link s1 -> s2 went down ( loop timeout 30 seconds )
# on all 3 ONOS instances
main.log.info( "Checking ONOS for link update" )
loop_count = 0
while( not ( link_down1 and link_down2 and link_down3 )
and loop_count < 30 ):
json_str1 = main.ONOS1cli.links()
json_str2 = main.ONOS2cli.links()
json_str3 = main.ONOS3cli.links()
if not ( json_str1 and json_str2 and json_str3 ):
main.log.error( "CLI command returned error " )
break
else:
json_obj1 = json.loads( json_str1 )
json_obj2 = json.loads( json_str2 )
json_obj3 = json.loads( json_str3 )
for obj1 in json_obj1:
if '01' not in obj1[ 'src' ][ 'device' ]:
link_down1 = True
main.log.info( "Link down from " +
"s1 -> s2 on ONOS1 detected" )
for obj2 in json_obj2:
if '01' not in obj2[ 'src' ][ 'device' ]:
link_down2 = True
main.log.info( "Link down from " +
"s1 -> s2 on ONOS2 detected" )
for obj3 in json_obj3:
if '01' not in obj3[ 'src' ][ 'device' ]:
link_down3 = True
main.log.info( "Link down from " +
"s1 -> s2 on ONOS3 detected" )
loop_count += 1
# If CLI doesn't like the continuous requests
# and exits in this loop, increase the sleep here.
# Consequently, while loop timeout will increase
time.sleep( 1 )
# Give time for metrics measurement to catch up
# NOTE: May need to be configured more accurately
time.sleep( 10 )
# If we exited the while loop and link down 1,2,3 are still
# false, then ONOS has failed to discover link down event
if not ( link_down1 and link_down2 and link_down3 ):
main.log.info( "Link down discovery failed" )
link_down_lat_graph1 = 0
link_down_lat_graph2 = 0
link_down_lat_graph3 = 0
link_down_lat_device1 = 0
link_down_lat_device2 = 0
link_down_lat_device3 = 0
assertion = main.FALSE
else:
json_topo_metrics_1 =\
main.ONOS1cli.topology_events_metrics()
json_topo_metrics_2 =\
main.ONOS2cli.topology_events_metrics()
json_topo_metrics_3 =\
main.ONOS3cli.topology_events_metrics()
json_topo_metrics_1 = json.loads( json_topo_metrics_1 )
json_topo_metrics_2 = json.loads( json_topo_metrics_2 )
json_topo_metrics_3 = json.loads( json_topo_metrics_3 )
main.log.info( "Obtaining graph and device timestamp" )
graph_timestamp_1 = \
json_topo_metrics_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_topo_metrics_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_topo_metrics_3[ graphTimestamp ][ 'value' ]
link_timestamp_1 = \
json_topo_metrics_1[ linkTimestamp ][ 'value' ]
link_timestamp_2 = \
json_topo_metrics_2[ linkTimestamp ][ 'value' ]
link_timestamp_3 = \
json_topo_metrics_3[ linkTimestamp ][ 'value' ]
if graph_timestamp_1 and graph_timestamp_2 and\
graph_timestamp_3 and link_timestamp_1 and\
link_timestamp_2 and link_timestamp_3:
link_down_lat_graph1 = int( graph_timestamp_1 ) -\
int( timestamp_link_down_t0 )
link_down_lat_graph2 = int( graph_timestamp_2 ) -\
int( timestamp_link_down_t0 )
link_down_lat_graph3 = int( graph_timestamp_3 ) -\
int( timestamp_link_down_t0 )
link_down_lat_link1 = int( link_timestamp_1 ) -\
int( timestamp_link_down_t0 )
link_down_lat_link2 = int( link_timestamp_2 ) -\
int( timestamp_link_down_t0 )
link_down_lat_link3 = int( link_timestamp_3 ) -\
int( timestamp_link_down_t0 )
else:
main.log.error( "There was an error calculating" +
" the delta for link down event" )
link_down_lat_graph1 = 0
link_down_lat_graph2 = 0
link_down_lat_graph3 = 0
link_down_lat_device1 = 0
link_down_lat_device2 = 0
link_down_lat_device3 = 0
main.log.info( "Link down latency ONOS1 iteration " +
str( i ) + " (end-to-end): " +
str( link_down_lat_graph1 ) + " ms" )
main.log.info( "Link down latency ONOS2 iteration " +
str( i ) + " (end-to-end): " +
str( link_down_lat_graph2 ) + " ms" )
main.log.info( "Link down latency ONOS3 iteration " +
str( i ) + " (end-to-end): " +
str( link_down_lat_graph3 ) + " ms" )
main.log.info( "Link down latency ONOS1 iteration " +
str( i ) + " (link-event-to-system-timestamp): " +
str( link_down_lat_link1 ) + " ms" )
main.log.info( "Link down latency ONOS2 iteration " +
str( i ) + " (link-event-to-system-timestamp): " +
str( link_down_lat_link2 ) + " ms" )
main.log.info( "Link down latency ONOS3 iteration " +
str( i ) + " (link-event-to-system-timestamp): " +
str( link_down_lat_link3 ) )
# Calculate avg of node calculations
link_down_lat_graph_avg =\
( link_down_lat_graph1 +
link_down_lat_graph2 +
link_down_lat_graph3 ) / 3
link_down_lat_link_avg =\
( link_down_lat_link1 +
link_down_lat_link2 +
link_down_lat_link3 ) / 3
# Set threshold and append latency to list
if link_down_lat_graph_avg > down_threshold_min and\
link_down_lat_graph_avg < down_threshold_max:
link_down_graph_to_system_list.append(
link_down_lat_graph_avg )
else:
main.log.info( "Link down latency exceeded threshold" )
main.log.info( "Results for iteration " + str( i ) +
"have been omitted" )
if link_down_lat_link_avg > down_threshold_min and\
link_down_lat_link_avg < down_threshold_max:
link_down_link_to_system_list.append(
link_down_lat_link_avg )
else:
main.log.info( "Link down latency exceeded threshold" )
main.log.info( "Results for iteration " + str( i ) +
"have been omitted" )
# NOTE: To remove loss rate and measure latency:
# 'sh tc qdisc del dev s1-eth1 root'
timestamp_link_up_t0 = time.time() * 1000
main.Mininet1.handle.sendline( "sh tc qdisc del dev " +
"s1-eth1 root" )
main.Mininet1.handle.expect( "mininet>" )
main.log.info( "Checking ONOS for link update" )
link_down1 = True
link_down2 = True
link_down3 = True
loop_count = 0
while( ( link_down1 and link_down2 and link_down3 )
and loop_count < 30 ):
json_str1 = main.ONOS1cli.links()
json_str2 = main.ONOS2cli.links()
json_str3 = main.ONOS3cli.links()
if not ( json_str1 and json_str2 and json_str3 ):
main.log.error( "CLI command returned error " )
break
else:
json_obj1 = json.loads( json_str1 )
json_obj2 = json.loads( json_str2 )
json_obj3 = json.loads( json_str3 )
for obj1 in json_obj1:
if '01' in obj1[ 'src' ][ 'device' ]:
link_down1 = False
main.log.info( "Link up from " +
"s1 -> s2 on ONOS1 detected" )
for obj2 in json_obj2:
if '01' in obj2[ 'src' ][ 'device' ]:
link_down2 = False
main.log.info( "Link up from " +
"s1 -> s2 on ONOS2 detected" )
for obj3 in json_obj3:
if '01' in obj3[ 'src' ][ 'device' ]:
link_down3 = False
main.log.info( "Link up from " +
"s1 -> s2 on ONOS3 detected" )
loop_count += 1
time.sleep( 1 )
if ( link_down1 and link_down2 and link_down3 ):
main.log.info( "Link up discovery failed" )
link_up_lat_graph1 = 0
link_up_lat_graph2 = 0
link_up_lat_graph3 = 0
link_up_lat_device1 = 0
link_up_lat_device2 = 0
link_up_lat_device3 = 0
assertion = main.FALSE
else:
json_topo_metrics_1 =\
main.ONOS1cli.topology_events_metrics()
json_topo_metrics_2 =\
main.ONOS2cli.topology_events_metrics()
json_topo_metrics_3 =\
main.ONOS3cli.topology_events_metrics()
json_topo_metrics_1 = json.loads( json_topo_metrics_1 )
json_topo_metrics_2 = json.loads( json_topo_metrics_2 )
json_topo_metrics_3 = json.loads( json_topo_metrics_3 )
main.log.info( "Obtaining graph and device timestamp" )
graph_timestamp_1 = \
json_topo_metrics_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_topo_metrics_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_topo_metrics_3[ graphTimestamp ][ 'value' ]
link_timestamp_1 = \
json_topo_metrics_1[ linkTimestamp ][ 'value' ]
link_timestamp_2 = \
json_topo_metrics_2[ linkTimestamp ][ 'value' ]
link_timestamp_3 = \
json_topo_metrics_3[ linkTimestamp ][ 'value' ]
if graph_timestamp_1 and graph_timestamp_2 and\
graph_timestamp_3 and link_timestamp_1 and\
link_timestamp_2 and link_timestamp_3:
link_up_lat_graph1 = int( graph_timestamp_1 ) -\
int( timestamp_link_up_t0 )
link_up_lat_graph2 = int( graph_timestamp_2 ) -\
int( timestamp_link_up_t0 )
link_up_lat_graph3 = int( graph_timestamp_3 ) -\
int( timestamp_link_up_t0 )
link_up_lat_link1 = int( link_timestamp_1 ) -\
int( timestamp_link_up_t0 )
link_up_lat_link2 = int( link_timestamp_2 ) -\
int( timestamp_link_up_t0 )
link_up_lat_link3 = int( link_timestamp_3 ) -\
int( timestamp_link_up_t0 )
else:
main.log.error( "There was an error calculating" +
" the delta for link down event" )
link_up_lat_graph1 = 0
link_up_lat_graph2 = 0
link_up_lat_graph3 = 0
link_up_lat_device1 = 0
link_up_lat_device2 = 0
link_up_lat_device3 = 0
if debug_mode == 'on':
main.log.info( "Link up latency ONOS1 iteration " +
str( i ) + " (end-to-end): " +
str( link_up_lat_graph1 ) + " ms" )
main.log.info( "Link up latency ONOS2 iteration " +
str( i ) + " (end-to-end): " +
str( link_up_lat_graph2 ) + " ms" )
main.log.info( "Link up latency ONOS3 iteration " +
str( i ) + " (end-to-end): " +
str( link_up_lat_graph3 ) + " ms" )
main.log.info(
"Link up latency ONOS1 iteration " +
str( i ) +
" (link-event-to-system-timestamp): " +
str( link_up_lat_link1 ) +
" ms" )
main.log.info(
"Link up latency ONOS2 iteration " +
str( i ) +
" (link-event-to-system-timestamp): " +
str( link_up_lat_link2 ) +
" ms" )
main.log.info(
"Link up latency ONOS3 iteration " +
str( i ) +
" (link-event-to-system-timestamp): " +
str( link_up_lat_link3 ) )
# Calculate avg of node calculations
link_up_lat_graph_avg =\
( link_up_lat_graph1 +
link_up_lat_graph2 +
link_up_lat_graph3 ) / 3
link_up_lat_link_avg =\
( link_up_lat_link1 +
link_up_lat_link2 +
link_up_lat_link3 ) / 3
# Set threshold and append latency to list
if link_up_lat_graph_avg > up_threshold_min and\
link_up_lat_graph_avg < up_threshold_max:
link_up_graph_to_system_list.append(
link_up_lat_graph_avg )
else:
main.log.info( "Link up latency exceeded threshold" )
main.log.info( "Results for iteration " + str( i ) +
"have been omitted" )
if link_up_lat_link_avg > up_threshold_min and\
link_up_lat_link_avg < up_threshold_max:
link_up_link_to_system_list.append(
link_up_lat_link_avg )
else:
main.log.info( "Link up latency exceeded threshold" )
main.log.info( "Results for iteration " + str( i ) +
"have been omitted" )
# Calculate min, max, avg of list and report
link_down_min = min( link_down_graph_to_system_list )
link_down_max = max( link_down_graph_to_system_list )
link_down_avg = sum( link_down_graph_to_system_list ) / \
len( link_down_graph_to_system_list )
link_up_min = min( link_up_graph_to_system_list )
link_up_max = max( link_up_graph_to_system_list )
link_up_avg = sum( link_up_graph_to_system_list ) / \
len( link_up_graph_to_system_list )
link_down_std_dev = \
str( round( numpy.std( link_down_graph_to_system_list ), 1 ) )
link_up_std_dev = \
str( round( numpy.std( link_up_graph_to_system_list ), 1 ) )
main.log.report( "Link down latency " +
"Avg: " + str( link_down_avg ) + " ms " +
"Std Deviation: " + link_down_std_dev + " ms" )
main.log.report( "Link up latency " +
"Avg: " + str( link_up_avg ) + " ms " +
"Std Deviation: " + link_up_std_dev + " ms" )
utilities.assert_equals(
expect=main.TRUE,
actual=assertion,
onpass="Link discovery latency calculation successful",
onfail="Link discovery latency case failed" )
def CASE5( self, main ):
"""
100 Switch discovery latency
Important:
This test case can be potentially dangerous if
your machine has previously set iptables rules.
One of the steps of the test case will flush
all existing iptables rules.
Note:
You can specify the number of switches in the
params file to adjust the switch discovery size
( and specify the corresponding topology in Mininet1
.topo file )
"""
import time
import subprocess
import os
import requests
import json
ONOS1_ip = main.params[ 'CTRL' ][ 'ip1' ]
ONOS2_ip = main.params[ 'CTRL' ][ 'ip2' ]
ONOS3_ip = main.params[ 'CTRL' ][ 'ip3' ]
MN1_ip = main.params[ 'MN' ][ 'ip1' ]
ONOS_user = main.params[ 'CTRL' ][ 'user' ]
default_sw_port = main.params[ 'CTRL' ][ 'port1' ]
# Number of iterations of case
num_iter = main.params[ 'TEST' ][ 'numIter' ]
num_sw = main.params[ 'TEST' ][ 'numSwitch' ]
# Timestamp 'keys' for json metrics output.
# These are subject to change, hence moved into params
deviceTimestamp = main.params[ 'JSON' ][ 'deviceTimestamp' ]
graphTimestamp = main.params[ 'JSON' ][ 'graphTimestamp' ]
debug_mode = main.params[ 'TEST' ][ 'debugMode' ]
local_time = time.strftime( '%X' )
local_time = local_time.replace( "/", "" )
local_time = local_time.replace( " ", "_" )
local_time = local_time.replace( ":", "" )
if debug_mode == 'on':
main.ONOS1.tshark_pcap( "eth0",
"/tmp/100_sw_lat_pcap_" + local_time )
# Threshold for this test case
sw_disc_threshold_str = main.params[ 'TEST' ][ 'swDisc100Threshold' ]
sw_disc_threshold_obj = sw_disc_threshold_str.split( "," )
sw_disc_threshold_min = int( sw_disc_threshold_obj[ 0 ] )
sw_disc_threshold_max = int( sw_disc_threshold_obj[ 1 ] )
tshark_ofp_output = "/tmp/tshark_ofp_" + num_sw + "sw.txt"
tshark_tcp_output = "/tmp/tshark_tcp_" + num_sw + "sw.txt"
tshark_ofp_result_list = []
tshark_tcp_result_list = []
sw_discovery_lat_list = []
main.case( num_sw + " Switch discovery latency" )
main.step( "Assigning all switches to ONOS1" )
for i in range( 1, int( num_sw ) + 1 ):
main.Mininet1.assign_sw_controller(
sw=str( i ),
ip1=ONOS1_ip,
port1=default_sw_port )
# Ensure that nodes are configured with ptpd
# Just a warning message
main.log.info( "Please check ptpd configuration to ensure" +
" All nodes' system times are in sync" )
time.sleep( 5 )
for i in range( 0, int( num_iter ) ):
main.step( "Set iptables rule to block incoming sw connections" )
# Set iptables rule to block incoming switch connections
# The rule description is as follows:
# Append to INPUT rule,
# behavior DROP that matches following:
# * packet type: tcp
# * source IP: MN1_ip
# * destination PORT: 6633
main.ONOS1.handle.sendline(
"sudo iptables -A INPUT -p tcp -s " + MN1_ip +
" --dport " + default_sw_port + " -j DROP" )
main.ONOS1.handle.expect( "\$" )
# Append to OUTPUT rule,
# behavior DROP that matches following:
# * packet type: tcp
# * source IP: MN1_ip
# * destination PORT: 6633
main.ONOS1.handle.sendline(
"sudo iptables -A OUTPUT -p tcp -s " + MN1_ip +
" --dport " + default_sw_port + " -j DROP" )
main.ONOS1.handle.expect( "\$" )
# Give time to allow rule to take effect
# NOTE: Sleep period may need to be configured
# based on the number of switches in the topology
main.log.info( "Please wait for switch connection to " +
"time out" )
time.sleep( 60 )
# Gather vendor OFP with tshark
main.ONOS1.tshark_grep( "OFP 86 Vendor",
tshark_ofp_output )
main.ONOS1.tshark_grep( "TCP 74 ",
tshark_tcp_output )
# NOTE: Remove all iptables rule quickly ( flush )
# Before removal, obtain TestON timestamp at which
# removal took place
# ( ensuring nodes are configured via ptp )
# sudo iptables -F
t0_system = time.time() * 1000
main.ONOS1.handle.sendline(
"sudo iptables -F" )
# Counter to track loop count
counter_loop = 0
counter_avail1 = 0
counter_avail2 = 0
counter_avail3 = 0
onos1_dev = False
onos2_dev = False
onos3_dev = False
while counter_loop < 60:
# Continue to check devices for all device
# availability. When all devices in all 3
# ONOS instances indicate that devices are available
# obtain graph event timestamp for t1.
device_str_obj1 = main.ONOS1cli.devices()
device_str_obj2 = main.ONOS2cli.devices()
device_str_obj3 = main.ONOS3cli.devices()
device_json1 = json.loads( device_str_obj1 )
device_json2 = json.loads( device_str_obj2 )
device_json3 = json.loads( device_str_obj3 )
for device1 in device_json1:
if device1[ 'available' ]:
counter_avail1 += 1
if counter_avail1 == int( num_sw ):
onos1_dev = True
main.log.info( "All devices have been " +
"discovered on ONOS1" )
else:
counter_avail1 = 0
for device2 in device_json2:
if device2[ 'available' ]:
counter_avail2 += 1
if counter_avail2 == int( num_sw ):
onos2_dev = True
main.log.info( "All devices have been " +
"discovered on ONOS2" )
else:
counter_avail2 = 0
for device3 in device_json3:
if device3[ 'available' ]:
counter_avail3 += 1
if counter_avail3 == int( num_sw ):
onos3_dev = True
main.log.info( "All devices have been " +
"discovered on ONOS3" )
else:
counter_avail3 = 0
if onos1_dev and onos2_dev and onos3_dev:
main.log.info( "All devices have been discovered " +
"on all ONOS instances" )
json_str_topology_metrics_1 =\
main.ONOS1cli.topology_events_metrics()
json_str_topology_metrics_2 =\
main.ONOS2cli.topology_events_metrics()
json_str_topology_metrics_3 =\
main.ONOS3cli.topology_events_metrics()
# Exit while loop if all devices discovered
break
counter_loop += 1
# Give some time in between CLI calls
#( will not affect measurement )
time.sleep( 3 )
main.ONOS1.tshark_stop()
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_ofp_output + " /tmp/" )
os.system( "scp " + ONOS_user + "@" + ONOS1_ip + ":" +
tshark_tcp_output + " /tmp/" )
# TODO: Automate OFP output analysis
# Debug mode - print out packets captured at runtime
if debug_mode == 'on':
ofp_file = open( tshark_ofp_output, 'r' )
main.log.info( "Tshark OFP Vendor output: " )
for line in ofp_file:
tshark_ofp_result_list.append( line )
main.log.info( line )
ofp_file.close()
tcp_file = open( tshark_tcp_output, 'r' )
main.log.info( "Tshark TCP 74 output: " )
for line in tcp_file:
tshark_tcp_result_list.append( line )
main.log.info( line )
tcp_file.close()
json_obj_1 = json.loads( json_str_topology_metrics_1 )
json_obj_2 = json.loads( json_str_topology_metrics_2 )
json_obj_3 = json.loads( json_str_topology_metrics_3 )
graph_timestamp_1 = \
json_obj_1[ graphTimestamp ][ 'value' ]
graph_timestamp_2 = \
json_obj_2[ graphTimestamp ][ 'value' ]
graph_timestamp_3 = \
json_obj_3[ graphTimestamp ][ 'value' ]
graph_lat_1 = int( graph_timestamp_1 ) - int( t0_system )
graph_lat_2 = int( graph_timestamp_2 ) - int( t0_system )
graph_lat_3 = int( graph_timestamp_3 ) - int( t0_system )
avg_graph_lat = \
( int( graph_lat_1 ) +
int( graph_lat_2 ) +
int( graph_lat_3 ) ) / 3
if avg_graph_lat > sw_disc_threshold_min \
and avg_graph_lat < sw_disc_threshold_max:
sw_discovery_lat_list.append(
avg_graph_lat )
else:
main.log.info( "100 Switch discovery latency " +
"exceeded the threshold." )
# END ITERATION FOR LOOP
sw_lat_min = min( sw_discovery_lat_list )
sw_lat_max = max( sw_discovery_lat_list )
sw_lat_avg = sum( sw_discovery_lat_list ) /\
len( sw_discovery_lat_list )
main.log.report( "100 Switch discovery lat " +
"Min: " + str( sw_lat_min ) + " ms" +
"Max: " + str( sw_lat_max ) + " ms" +
"Avg: " + str( sw_lat_avg ) + " ms" )