| # Copyright 2017 Open Networking Foundation (ONF) |
| # |
| # Please refer questions to either the onos test mailing list at <onos-test@onosproject.org>, |
| # the System Testing Plans and Results wiki page at <https://wiki.onosproject.org/x/voMg>, |
| # or the System Testing Guide page at <https://wiki.onosproject.org/x/WYQg> |
| # |
| # TestON is free software: you can redistribute it and/or modify |
| # it under the terms of the GNU General Public License as published by |
| # the Free Software Foundation, either version 2 of the License, or |
| # (at your option) any later version. |
| # |
| # TestON is distributed in the hope that it will be useful, |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| # GNU General Public License for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with TestON. If not, see <http://www.gnu.org/licenses/>. |
| # |
| # If you have any questions, or if you don't understand R, |
| # please contact Jeremy Ronquillo: jeremyr@opennetworking.org |
| |
| # This is the R script that generates the FUNC and HA result graphs. |
| |
| # ********************************************************** |
| # STEP 1: Data management. |
| # ********************************************************** |
| |
| print( "STEP 1: Data management." ) |
| |
| # Command line arguments are read. Args include the database credentials, test name, branch name, and the directory to output files. |
| print( "Reading commmand-line args." ) |
| args <- commandArgs( trailingOnly=TRUE ) |
| |
| # Import libraries to be used for graphing and organizing data, respectively. |
| # Find out more about ggplot2: https://github.com/tidyverse/ggplot2 |
| # reshape2: https://github.com/hadley/reshape |
| # RPostgreSQL: https://code.google.com/archive/p/rpostgresql/ |
| print( "Importing libraries." ) |
| library( ggplot2 ) |
| library( reshape2 ) |
| library( RPostgreSQL ) |
| |
| # Check if sufficient args are provided. |
| if ( is.na( args[ 8 ] ) ){ |
| print( "Usage: Rscript testCaseGraphGenerator.R <database-host> <database-port> <database-user-id> <database-password> <test-name> <branch-name> <#-builds-to-show> <directory-to-save-graphs>" ) |
| q() # basically exit(), but in R |
| } |
| |
| # Filenames for the output graph include the testname, branch, and the graph type. |
| outputFile <- paste( args[ 8 ], args[ 5 ], sep="" ) |
| outputFile <- paste( outputFile, args[ 6 ], sep="_" ) |
| outputFile <- paste( outputFile, args[ 7 ], sep="_" ) |
| outputFile <- paste( outputFile, "builds", sep="-" ) |
| outputFile <- paste( outputFile, "_graph.jpg", sep="" ) |
| |
| # From RPostgreSQL |
| print( "Reading from databases." ) |
| con <- dbConnect( dbDriver( "PostgreSQL" ), dbname="onostest", host=args[ 1 ], port=strtoi( args[ 2 ] ), user=args[ 3 ],password=args[ 4 ] ) |
| |
| print( "Creating SQL command." ) |
| # Creating SQL command based on command line args. |
| command <- paste( "SELECT * FROM executed_test_tests WHERE actual_test_name='", args[ 5 ], sep="" ) |
| command <- paste( command, "' AND branch='", sep="" ) |
| command <- paste( command, args[ 6 ], sep="" ) |
| command <- paste( command, "' ORDER BY date DESC LIMIT ", sep="" ) |
| command <- paste( command, args[ 7 ], sep="" ) |
| fileData <- dbGetQuery( con, command ) |
| |
| # Title of graph based on command line args. |
| title <- paste( args[ 5 ], args[ 6 ], sep=" - " ) |
| title <- paste( title, "Results of Last ", sep=" \n " ) |
| title <- paste( title, args[ 7 ], sep="" ) |
| title <- paste( title, " Builds", sep="" ) |
| |
| # ********************************************************** |
| # STEP 2: Organize data. |
| # ********************************************************** |
| |
| print( "STEP 2: Organize data." ) |
| |
| # Create lists c() and organize data into their corresponding list. |
| print( "Sorting data into new data frame." ) |
| categories <- c( fileData[ 'num_failed' ], fileData[ 'num_passed' ], fileData[ 'num_planned' ] ) |
| |
| # Parse lists into data frames. |
| # This is where reshape2 comes in. Avgs list is converted to data frame. |
| dataFrame <- melt( categories ) |
| dataFrame$build <- fileData$build |
| colnames( dataFrame ) <- c( "Tests", "Status", "Build" ) |
| |
| # Format data frame so that the data is in the same order as it appeared in the file. |
| dataFrame$Status <- as.character( dataFrame$Status ) |
| dataFrame$Status <- factor( dataFrame$Status, levels=unique( dataFrame$Status ) ) |
| |
| # Add planned, passed, and failed results to the dataFrame (for the fill below the lines) |
| dataFrame$num_planned <- fileData$num_planned |
| dataFrame$num_passed <- fileData$num_passed |
| dataFrame$num_failed <- fileData$num_failed |
| |
| # Adding a temporary reversed iterative list to the dataFrame so that there are no gaps in-between build numbers. |
| dataFrame$iterative <- rev( seq( 1, nrow( fileData ), by = 1 ) ) |
| |
| print( "Data Frame Results:" ) |
| print( dataFrame ) |
| |
| # ********************************************************** |
| # STEP 3: Generate graphs. |
| # ********************************************************** |
| |
| print( "STEP 3: Generate graphs." ) |
| |
| print( "Creating main plot." ) |
| # Create the primary plot here. |
| # ggplot contains the following arguments: |
| # - data: the data frame that the graph will be based off of |
| # - aes: the asthetics of the graph which require: |
| # - x: x-axis values (usually iterative, but it will become build # later) |
| # - y: y-axis values (usually tests) |
| # - color: the category of the colored lines (usually status of test) |
| mainPlot <- ggplot( data = dataFrame, aes( x = iterative, y = Tests, color = Status ) ) |
| |
| print( "Formatting main plot." ) |
| # geom_ribbon is used so that there is a colored fill below the lines. These values shouldn't be changed. |
| failedColor <- geom_ribbon( aes( ymin = 0, ymax = dataFrame$num_failed ), fill = "red", linetype = 0, alpha = 0.07 ) |
| passedColor <- geom_ribbon( aes( ymin = 0, ymax = dataFrame$num_passed ), fill = "green", linetype = 0, alpha = 0.05 ) |
| plannedColor <- geom_ribbon( aes( ymin = 0, ymax = dataFrame$num_planned ), fill = "blue", linetype = 0, alpha = 0.01 ) |
| |
| xScaleConfig <- scale_x_continuous( breaks = dataFrame$iterative, label = dataFrame$Build ) |
| yScaleConfig <- scale_y_continuous( breaks = seq( 0, max( dataFrame$Tests ), by = ceiling( max( dataFrame$Tests ) / 10 ) ) ) |
| |
| xLabel <- xlab( "Build Number" ) |
| yLabel <- ylab( "Test Cases" ) |
| fillLabel <- labs( fill="Type" ) |
| legendLabels <- scale_colour_discrete( labels = c( "Failed", "Passed", "Planned" ) ) |
| centerTitle <- theme( plot.title=element_text( hjust = 0.5 ) ) # To center the title text |
| theme <- theme( plot.title = element_text( size = 18, face='bold' ) ) |
| |
| # Store plot configurations as 1 variable |
| fundamentalGraphData <- mainPlot + plannedColor + passedColor + failedColor + xScaleConfig + yScaleConfig + xLabel + yLabel + fillLabel + legendLabels + centerTitle + theme |
| |
| print( "Generating line graph." ) |
| |
| lineGraphFormat <- geom_line( size = 1.1 ) |
| pointFormat <- geom_point( size = 3 ) |
| title <- ggtitle( title ) |
| |
| result <- fundamentalGraphData + lineGraphFormat + pointFormat + title |
| |
| # Save graph to file |
| print( paste( "Saving result graph to", outputFile ) ) |
| ggsave( outputFile, width = 10, height = 6, dpi = 200 ) |
| print( paste( "Successfully wrote result graph out to", outputFile ) ) |