blob: 5daa48ed1ad52d0547a436a21f9370f57b385f21 [file] [log] [blame]
#TopoPerfNext
#
#Topology Performance test for ONOS-next
#
#andrew@onlab.us
import time
import sys
import os
import re
class TopoPerfNext:
def __init__(self):
self.default = ''
def CASE1(self, main):
'''
ONOS startup sequence
'''
import time
cell_name = main.params['ENV']['cellName']
git_pull = main.params['GIT']['autoPull']
checkout_branch = main.params['GIT']['checkout']
ONOS1_ip = main.params['CTRL']['ip1']
ONOS2_ip = main.params['CTRL']['ip2']
ONOS3_ip = main.params['CTRL']['ip3']
MN1_ip = main.params['MN']['ip1']
BENCH_ip = main.params['BENCH']['ip']
main.case("Setting up test environment")
main.step("Creating cell file")
cell_file_result = main.ONOSbench.create_cell_file(
BENCH_ip, cell_name, MN1_ip, "onos-core",
ONOS1_ip, ONOS2_ip, ONOS3_ip)
main.step("Applying cell file to environment")
cell_apply_result = main.ONOSbench.set_cell(cell_name)
verify_cell_result = main.ONOSbench.verify_cell()
main.step("Git checkout and pull "+checkout_branch)
if git_pull == 'on':
checkout_result = \
main.ONOSbench.git_checkout(checkout_branch)
pull_result = main.ONOSbench.git_pull()
else:
checkout_result = main.TRUE
pull_result = main.TRUE
main.log.info("Skipped git checkout and pull")
main.step("Using mvn clean & install")
#mvn_result = main.ONOSbench.clean_install()
mvn_result = main.TRUE
main.step("Creating ONOS package")
package_result = main.ONOSbench.onos_package()
main.step("Installing ONOS package")
install1_result = main.ONOSbench.onos_install(node=ONOS1_ip)
install2_result = main.ONOSbench.onos_install(node=ONOS2_ip)
install3_result = main.ONOSbench.onos_install(node=ONOS3_ip)
#NOTE: This step may be unnecessary
#main.step("Starting ONOS service")
#start_result = main.ONOSbench.onos_start(ONOS1_ip)
main.step("Set cell for ONOS cli env")
main.ONOS1cli.set_cell(cell_name)
main.ONOS2cli.set_cell(cell_name)
main.ONOS3cli.set_cell(cell_name)
time.sleep(10)
main.step("Start onos cli")
cli1 = main.ONOS1cli.start_onos_cli(ONOS1_ip)
cli2 = main.ONOS2cli.start_onos_cli(ONOS2_ip)
cli3 = main.ONOS3cli.start_onos_cli(ONOS3_ip)
main.step("Enable metrics feature")
main.ONOS1cli.feature_install("onos-app-metrics-topology")
main.ONOS2cli.feature_install("onos-app-metrics-topology")
main.ONOS3cli.feature_install("onos-app-metrics-topology")
utilities.assert_equals(expect=main.TRUE,
actual= cell_file_result and cell_apply_result and\
verify_cell_result and checkout_result and\
pull_result and mvn_result and\
install1_result and install2_result and\
install3_result,
onpass="ONOS started successfully",
onfail="Failed to start ONOS")
def CASE2(self, main):
'''
Assign s1 to ONOS1 and measure latency
There are 4 levels of latency measurements to this test:
1) End-to-end measurement: Complete end-to-end measurement
from TCP (SYN/ACK) handshake to Graph change
2) OFP-to-graph measurement: 'ONOS processing' snippet of
measurement from OFP Vendor message to Graph change
3) OFP-to-device measurement: 'ONOS processing without
graph change' snippet of measurement from OFP vendor
message to Device change timestamp
4) T0-to-device measurement: Measurement that includes
the switch handshake to devices timestamp without
the graph view change. (TCP handshake -> Device
change)
'''
import time
import subprocess
import json
import requests
import os
ONOS1_ip = main.params['CTRL']['ip1']
ONOS2_ip = main.params['CTRL']['ip2']
ONOS3_ip = main.params['CTRL']['ip3']
ONOS_user = main.params['CTRL']['user']
default_sw_port = main.params['CTRL']['port1']
#Number of iterations of case
num_iter = main.params['TEST']['numIter']
#Timestamp 'keys' for json metrics output.
#These are subject to change, hence moved into params
deviceTimestamp = main.params['JSON']['deviceTimestamp']
graphTimestamp = main.params['JSON']['graphTimestamp']
#List of switch add latency collected from
#all iterations
latency_end_to_end_list = []
latency_ofp_to_graph_list = []
latency_ofp_to_device_list = []
latency_t0_to_device_list = []
#Directory/file to store tshark results
tshark_of_output = "/tmp/tshark_of_topo.txt"
tshark_tcp_output = "/tmp/tshark_tcp_topo.txt"
#String to grep in tshark output
tshark_tcp_string = "TCP 74 "+default_sw_port
tshark_of_string = "OFP 86 Vendor"
#Initialize assertion to TRUE
assertion = main.TRUE
main.log.report("Latency of adding one switch")
for i in range(0, int(num_iter)):
main.log.info("Starting tshark capture")
#* TCP [ACK, SYN] is used as t0_a, the
# very first "exchange" between ONOS and
# the switch for end-to-end measurement
#* OFP [Stats Reply] is used for t0_b
# the very last OFP message between ONOS
# and the switch for ONOS measurement
main.ONOS1.tshark_grep(tshark_tcp_string,
tshark_tcp_output)
main.ONOS1.tshark_grep(tshark_of_string,
tshark_of_output)
#Wait and ensure tshark is started and
#capturing
time.sleep(10)
main.log.info("Assigning s1 to controller")
main.Mininet1.assign_sw_controller(sw="1",
ip1=ONOS1_ip, port1=default_sw_port)
#Wait and ensure switch is assigned
#before stopping tshark
time.sleep(30)
main.log.info("Stopping all Tshark processes")
main.ONOS1.stop_tshark()
#tshark output is saved in ONOS. Use subprocess
#to copy over files to TestON for parsing
main.log.info("Copying over tshark files")
#TCP CAPTURE ****
#Copy the tshark output from ONOS machine to
#TestON machine in tshark_tcp_output directory>file
os.system("scp "+ONOS_user+"@"+ONOS1_ip+":"+
tshark_tcp_output+" /tmp/")
tcp_file = open(tshark_tcp_output, 'r')
temp_text = tcp_file.readline()
temp_text = temp_text.split(" ")
main.log.info("Object read in from TCP capture: "+
str(temp_text))
if len(temp_text) > 1:
t0_tcp = float(temp_text[1])*1000.0
else:
main.log.error("Tshark output file for TCP"+
" returned unexpected results")
t0_tcp = 0
assertion = main.FALSE
tcp_file.close()
#****************
#OF CAPTURE ****
os.system("scp "+ONOS_user+"@"+ONOS1_ip+":"+
tshark_of_output+" /tmp/")
of_file = open(tshark_of_output, 'r')
line_ofp = ""
#Read until last line of file
while True:
temp_text = of_file.readline()
if temp_text !='':
line_ofp = temp_text
else:
break
obj = line_ofp.split(" ")
main.log.info("Object read in from OFP capture: "+
str(line_ofp))
if len(line_ofp) > 1:
t0_ofp = float(obj[1])*1000.0
else:
main.log.error("Tshark output file for OFP"+
" returned unexpected results")
t0_ofp = 0
assertion = main.FALSE
of_file.close()
#****************
#TODO:
#Get json object from all 3 ONOS instances
json_str_1 = main.ONOS1cli.topology_events_metrics()
json_str_2 = main.ONOS2cli.topology_events_metrics()
json_str_3 = main.ONOS3cli.topology_events_metrics()
json_obj_1 = json.loads(json_str_1)
json_obj_2 = json.loads(json_str_2)
json_obj_3 = json.loads(json_str_3)
#Obtain graph timestamp. This timestsamp captures
#the epoch time at which the topology graph was updated.
graph_timestamp_1 = \
json_obj_1[graphTimestamp]['value']
graph_timestamp_2 = \
json_obj_2[graphTimestamp]['value']
graph_timestamp_3 = \
json_obj_3[graphTimestamp]['value']
#Obtain device timestamp. This timestamp captures
#the epoch time at which the device event happened
device_timestamp_1 = \
json_obj_1[deviceTimestamp]['value']
device_timestamp_2 = \
json_obj_2[deviceTimestamp]['value']
device_timestamp_3 = \
json_obj_3[deviceTimestamp]['value']
#t0 to device processing latency
delta_device_1 = int(device_timestamp_1) - int(t0_tcp)
delta_device_2 = int(device_timestamp_2) - int(t0_tcp)
delta_device_3 = int(device_timestamp_3) - int(t0_tcp)
#Get average of delta from all instances
avg_delta_device = \
(int(delta_device_1)+\
int(delta_device_2)+\
int(delta_device_3)) / 3
#Ensure avg delta meets the threshold before appending
if avg_delta_device > 0.0 and avg_delta_device < 10000:
latency_t0_to_device_list.append(avg_delta_device)
else:
main.log.info("Results ignored due to excess in "+\
"threshold")
#t0 to graph processing latency (end-to-end)
delta_graph_1 = int(graph_timestamp_1) - int(t0_tcp)
delta_graph_2 = int(graph_timestamp_2) - int(t0_tcp)
delta_graph_3 = int(graph_timestamp_3) - int(t0_tcp)
#Get average of delta from all instances
avg_delta_graph = \
(int(delta_graph_1)+\
int(delta_graph_2)+\
int(delta_graph_3)) / 3
latency_end_to_end_list.append(avg_delta_graph)
#Ensure avg delta meets the threshold before appending
if avg_delta_graph > 0.0 and avg_delta_graph < 10000:
latency_t0_to_device_list.append(avg_delta_graph)
else:
main.log.info("Results ignored due to excess in "+\
"threshold")
#ofp to graph processing latency (ONOS processing)
delta_ofp_graph_1 = int(graph_timestamp_1) - int(t0_ofp)
delta_ofp_graph_2 = int(graph_timestamp_2) - int(t0_ofp)
delta_ofp_graph_3 = int(graph_timestamp_3) - int(t0_ofp)
avg_delta_ofp_graph = \
(int(delta_ofp_graph_1)+\
int(delta_ofp_graph_2)+\
int(delta_ofp_graph_3)) / 3
if avg_delta_ofp_graph > 0.0 and avg_delta_ofp_graph < 10000:
latency_ofp_to_graph_list.append(avg_delta_ofp_graph)
else:
main.log.info("Results ignored due to excess in "+\
"threshold")
#ofp to device processing latency (ONOS processing)
delta_ofp_device_1 = float(device_timestamp_1) - float(t0_ofp)
delta_ofp_device_2 = float(device_timestamp_2) - float(t0_ofp)
delta_ofp_device_3 = float(device_timestamp_3) - float(t0_ofp)
avg_delta_ofp_device = \
(float(delta_ofp_device_1)+\
float(delta_ofp_device_2)+\
float(delta_ofp_device_3)) / 3.0
#NOTE: ofp - delta measurements are occasionally negative.
# consider changing or purging the measurement
#TODO:
#Fetch logs upon threshold excess
main.log.info("ONOS1 delta end-to-end: "+
str(delta_graph_1))
main.log.info("ONOS2 delta end-to-end: "+
str(delta_graph_2))
main.log.info("ONSO3 delta end-to-end: "+
str(delta_graph_3))
main.log.info("ONOS1 delta OFP - graph: "+
str(delta_ofp_graph_1))
main.log.info("ONOS2 delta OFP - graph: "+
str(delta_ofp_graph_2))
main.log.info("ONOS3 delta OFP - graph: "+
str(delta_ofp_graph_3))
main.log.info("ONOS1 delta device - t0: "+
str(delta_device_1))
main.log.info("ONOS2 delta device - t0: "+
str(delta_device_2))
main.log.info("ONOS3 delta device - t0: "+
str(delta_device_3))
main.log.info("ONOS1 delta OFP - device: "+
str(delta_ofp_device_1))
main.log.info("ONOS2 delta OFP - device: "+
str(delta_ofp_device_2))
main.log.info("ONOS3 delta OFP - device: "+
str(delta_ofp_device_3))
main.step("Remove switch from controller")
main.Mininet1.delete_sw_controller("s1")
time.sleep(5)
#If there is at least 1 element in each list,
#pass the test case
if len(latency_end_to_end_list) > 0 and\
len(latency_ofp_to_graph_list) > 0 and\
len(latency_ofp_to_device_list) > 0 and\
len(latency_t0_to_device_list) > 0:
assertion = main.TRUE
#Calculate min, max, avg of latency lists
latency_end_to_end_max = \
int(max(latency_end_to_end_list))
latency_end_to_end_min = \
int(min(latency_end_to_end_list))
latency_end_to_end_avg = \
(int(sum(latency_end_to_end_list)) / \
len(latency_end_to_end_list))
latency_ofp_to_graph_max = \
int(max(latency_ofp_to_graph_list))
latency_ofp_to_graph_min = \
int(min(latency_ofp_to_graph_list))
latency_ofp_to_graph_avg = \
(int(sum(latency_ofp_to_graph_list)) / \
len(latency_ofp_to_graph_list))
latency_ofp_to_device_max = \
int(max(latency_ofp_to_device_list))
latency_ofp_to_device_min = \
int(min(latency_ofp_to_device_list))
latency_ofp_to_device_avg = \
(int(sum(latency_ofp_to_device_list)) / \
len(latency_ofp_to_device_list))
latency_t0_to_device_max = \
float(max(latency_t0_to_device_list))
latency_t0_to_device_min = \
float(min(latency_t0_to_device_list))
latency_t0_to_device_avg = \
(float(sum(latency_t0_to_device_list)) / \
len(latency_ofp_to_device_list))
main.log.report("Switch add - End-to-end latency: \n"+\
"Min: "+str(latency_end_to_end_min)+"\n"+\
"Max: "+str(latency_end_to_end_max)+"\n"+\
"Avg: "+str(latency_end_to_end_avg))
main.log.report("Switch add - OFP-to-Graph latency: \n"+\
"Min: "+str(latency_ofp_to_graph_min)+"\n"+\
"Max: "+str(latency_ofp_to_graph_max)+"\n"+\
"Avg: "+str(latency_ofp_to_graph_avg))
main.log.report("Switch add - OFP-to-Device latency: \n"+\
"Min: "+str(latency_ofp_to_device_min)+"\n"+\
"Max: "+str(latency_ofp_to_device_max)+"\n"+\
"Avg: "+str(latency_ofp_to_device_avg))
main.log.report("Switch add - t0-to-Device latency: \n"+\
"Min: "+str(latency_t0_to_device_min)+"\n"+\
"Max: "+str(latency_t0_to_device_max)+"\n"+\
"Avg: "+str(latency_t0_to_device_avg))
utilities.assert_equals(expect=main.TRUE, actual=assertion,
onpass="Switch latency test successful",
onfail="Switch latency test failed")
def CASE3(self, main):
'''
Bring port up / down and measure latency.
Port enable / disable is simulated by ifconfig up / down
'''
import time
import subprocess
import os
import requests
import json
ONOS1_ip = main.params['CTRL']['ip1']
default_sw_port = main.params['CTRL']['port1']
ONOS_user = main.params['CTRL']['user']
num_iter = main.params['TEST']['numIter']
tshark_port_status = "OFP 130 Port Status"
tshark_port_up = "/tmp/tshark_port_up.txt"
tshark_port_down = "/tmp/tshark_port_down.txt"
main.log.report("Port enable / disable latency")
main.step("Assign switch to controller")
main.Mininet1.assign_sw_controller(sw="1",ip1=ONOS1_ip,
port1=default_sw_port)
main.step("Verify switch is assigned correctly")
result_s1 = main.Mininet1.get_sw_controller(sw="s1")
if result_s1 == main.FALSE:
main.log.info("Switch s1 was not assigned correctly")
assertion = main.FALSE
else:
main.log.info("Switch s1 was assigned correctly")
for i in range(0, int(num_iter)):
main.step("Starting wireshark capture for port status down")
main.ONOS1.tshark_grep(tshark_port_status,
tshark_port_down)
time.sleep(10)
main.step("Disable port (interface s1-eth2)")
main.Mininet2.handle.sendline("sudo ifconfig s1-eth2 down")
main.Mininet2.handle.expect("\$")
time.sleep(20)
main.ONOS1.tshark_stop()
time.sleep(5)
#Copy tshark output file from ONOS to TestON instance
#/tmp directory
os.system("scp "+ONOS_user+"@"+ONOS1_ip+":"+
tshark_port_down+" /tmp/")
f_port_down = open(tshark_port_down, 'r')
f_line = f_port_down.readline()
obj_down = f_line.split(" ")
if len(f_line) > 0:
timestamp_begin_pt_down = int(float(obj_down[1])*1000)
else:
main.log.info("Tshark output file returned unexpected"+
" results")
timestamp_begin_pt_down = 0
main.step("Obtain t1 by REST call")
#TODO: Implement json object parsing here
timestamp_end_pt_down_1 = 0
timestamp_end_pt_down_2 = 0
timestamp_end_pt_down_3 = 0
delta_pt_down_1 = int(timestamp_end_pt_down_1) - \
int(timestamp_begin_pt_down)
delta_pt_down_2 = int(timestamp_end_pt_down_2) - \
int(timestamp_begin_pt_down)
delta_pt_down_3 = int(timestamp_end_pt_down_3) - \
int(timestamp_begin_pt_down)
#TODO: Remove these logs. For test purposes only
main.log.info("Delta1: "+str(delta_pt_down_1))
main.log.info("Delta2: "+str(delta_pt_down_2))
main.log.info("Delta3: "+str(delta_pt_down_3))
#Port up events
main.step("Enable port and obtain timestamp")
main.step("Starting wireshark capture for port status up")
main.ONOS1.tshark_grep("OFP 130 Port Status", tshark_port_up)
time.sleep(10)
main.Mininet2.handle.sendline("sudo ifconfig s1-eth2 up")
main.Mininet2.handle.expect("\$")
time.sleep(20)
os.system("scp "+ONOS_user+"@"+ONOS1_ip+":"+
tshark_port_up+" /tmp/")
f_port_up = open(tshark_port_up, 'r')
f_line = f_port_down.readline()
obj_up = f_line.split(" ")
if len(f_line) > 0:
timestamp_begin_pt_up = int(float(obj_up[1])*1000)
else:
main.log.info("Tshark output file returned unexpected"+
" results.")
timestamp_begin_pt_up = 0
main.step("Obtain t1 by REST call")
#TODO: Implement json object parsing here
timestamp_end_pt_up_1 = 0
timestamp_end_pt_up_2 = 0
timestamp_end_pt_up_3 = 0
delta_pt_up_1 = int(timestamp_end_pt_up_1) - \
int(timestamp_begin_pt_up)
delta_pt_up_2 = int(timestamp_end_pt_up_2) - \
int(timestamp_begin_pt_up)
delta_pt_up_3 = int(timestamp_end_pt_up_3) - \
int(timestamp_begin_pt_up)
#TODO: Remove these logs. For test purposes only
main.log.info("Delta1: "+str(delta_pt_up_1))
main.log.info("Delta2: "+str(delta_pt_up_2))
main.log.info("Delta3: "+str(delta_pt_up_3))