blob: b5bf9f614b961fb737d43870c2881f8aad555b2e [file] [log] [blame]
#!/usr/bin/env python
"""
Copyright 2016 Open Networking Foundation ( ONF )
Please refer questions to either the onos test mailing list at <onos-test@onosproject.org>,
the System Testing Plans and Results wiki page at <https://wiki.onosproject.org/x/voMg>,
or the System Testing Guide page at <https://wiki.onosproject.org/x/WYQg>
TestON is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
( at your option ) any later version.
TestON is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with TestON. If not, see <http://www.gnu.org/licenses/>.
"""
import time
import random
class Graph:
"""
Graph class provides implementations of graph algorithms.
The functions currently supported include:
- Comparing two graphs with specified attributes for vertices and edges
- Getting DFI ( Depth First Index ) and back edges during a DFS
- Chain decomposition of a graph
- Finding ( non- )cut-edges and vertices
"""
def __init__( self ):
# We use a dictionary to store all information about the graph
self.graphDict = {}
# Depth-first index of each vertex
self.DFI = {}
self.currentDFI = 0
# Parent vertex ( and edge to that vertex ) of each vertex in depth-first search tree
self.parentVertexInDFS = {}
self.parentEdgeInDFS = {}
# Back edges of the graph generated during DFS
self.backEdges = {}
# All chains in chain decomposition algorithm
self.chains = []
def update( self, graphDict ):
"""
Update the graph data. The current graph dictionary will be replaced by the
new one.
graphDict is in a dictionary which maps each vertex to a list of attributes.
An example of graphDict:
{ vertex1: { 'edges': ..., 'name': ..., 'protocol': ... },
vertex2: { 'edges': ..., 'name': ..., 'protocol': ... } }
Each vertex should at least have an 'edges' attribute which describes the
adjacency information. The value of 'edges' attribute is also represented by
a dictionary, which maps each edge ( identified by the neighbor vertex ) to a
list of attributes.
An example of the edges dictionary:
'edges': { vertex2: { 'port': ..., 'type': ... },
vertex3: { 'port': ..., 'type': ... } }
"""
self.graphDict = graphDict
return main.TRUE
def compareGraphs( self, graphDictA, graphDictB, vertexAttributes=[ 'edges' ], edgeAttributes=[ 'port' ] ):
"""
Compare two graphs.
By default only the adjacency relationship, i.e. 'port' attribute in
'edges' attribute for each vertex, is compared, To get other attributes
included, attribute name needs to be specified in the args, e.g.
vertexAttributes=[ 'edges', 'protocol' ] or
edgeAttributes=[ 'port', 'type' ]
Return main.TRUE if two graphs are equal, otherwise main.FALSE
"""
try:
result = main.TRUE
for vertex in set( graphDictA ).difference( graphDictB ):
result = main.FALSE
main.log.warn( "Graph: graph B: vertex {} not found".format( vertex ) )
for vertex in set( graphDictB ).difference( graphDictA ):
result = main.FALSE
main.log.warn( "Graph: graph A: vertex {} not found".format( vertex ) )
for vertex in set( graphDictA ).intersection( graphDictB ):
for vertexAttribute in vertexAttributes:
attributeFound = True
if vertexAttribute not in graphDictA[ vertex ]:
main.log.warn( "Graph: graph A -> vertex {}: attribute {} not found".format( vertex, vertexAttribute ) )
attributeFound = False
if vertexAttribute not in graphDictB[ vertex ]:
attributeFound = False
main.log.warn( "Graph: graph B -> vertex {}: attribute {} not found".format( vertex, vertexAttribute ) )
if not attributeFound:
result = main.FALSE
continue
else:
# Compare two attributes
attributeValueA = graphDictA[ vertex ][ vertexAttribute ]
attributeValueB = graphDictB[ vertex ][ vertexAttribute ]
# FIXME: the comparison may not work for ( sub )attribute values that are of list type
# For attributes except for 'edges', we just rely on '==' for comparison
if not vertexAttribute == 'edges':
if not attributeValueA == attributeValueB:
result = main.FALSE
main.log.warn( "Graph: vertex {}: {} does not match: {} and {}".format( vertex,
vertexAttribute,
attributeValueA,
attributeValueB ) )
# The structure of 'edges' is similar to that of graphs, so we use the same method for comparison
else:
edgeDictA = attributeValueA
edgeDictB = attributeValueB
for neighbor in set( edgeDictA ).difference( edgeDictB ):
result = main.FALSE
main.log.warn( "Graph: graph B -> vertex {}: neighbor {} not found".format( vertex, neighbor ) )
for neighbor in set( edgeDictB ).difference( edgeDictA ):
result = main.FALSE
main.log.warn( "Graph: graph A -> vertex {}: neighbor {} not found".format( vertex, neighbor ) )
for neighbor in set( edgeDictA ).intersection( edgeDictB ):
for edgeAttribute in edgeAttributes:
attributeFound = True
if edgeAttribute not in edgeDictA[ neighbor ]:
attributeFound = False
main.log.warn( "Graph: graph A -> vertex {} -> neighbor {}: attribute {} not found".format( vertex,
neighbor,
edgeAttribute ) )
if edgeAttribute not in edgeDictB[ neighbor ]:
attributeFound = False
main.log.warn( "Graph: graph B -> vertex {} -> neighbor {}: attribute {} not found".format( vertex,
neighbor,
edgeAttribute ) )
if not attributeFound:
result = main.FALSE
continue
else:
# Compare two attributes
attributeValueA = edgeDictA[ neighbor ][ edgeAttribute ]
attributeValueB = edgeDictB[ neighbor ][ edgeAttribute ]
if not attributeValueA == attributeValueB:
result = main.FALSE
main.log.warn( "Graph: vertex {} -> neighbor {}: {} does not match: {} and {}".format( vertex,
neighbor,
edgeAttribute,
attributeValueA,
attributeValueB ) )
if not result:
# main.log.debug( "Graph: graphDictA: {}".format( graphDictA ) )
# main.log.debug( "Graph: graphDictB: {}".format( graphDictB ) )
pass
return result
except TypeError:
main.log.exception( "Graph: TypeError exception found" )
return main.ERROR
except KeyError:
main.log.exception( "Graph: KeyError exception found" )
return main.ERROR
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return main.ERROR
def getNonCutEdges( self ):
"""
Get a list of non-cut-edges ( non-bridges ).
The definition of a cut-edge ( bridge ) is: the deletion of a cut-edge will
increase the number of connected component of a graph.
The function is realized by impelementing Schmidt's algorithm based on
chain decomposition.
Returns a list of edges, e.g.
[ [ vertex1, vertex2 ], [ vertex2, vertex3 ] ]
"""
try:
if not self.depthFirstSearch():
return None
if not self.findChains():
return None
nonCutEdges = []
for chain in self.chains:
for edge in chain:
nonCutEdges.append( edge )
# main.log.debug( 'Non-cut-edges: {}'.format( nonCutEdges ) )
return nonCutEdges
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return None
def getNonCutVertices( self ):
"""
Get a list of non-cut-vertices.
The definition of a cut-vertex is: the deletion of a cut-vertex will
increase the number of connected component of a graph.
The function is realized by impelementing Schmidt's algorithm based on
chain decomposition.
Returns a list of vertices, e.g. [ vertex1, vertex2, vertex3 ]
"""
try:
nonCutEdges = self.getNonCutEdges()
# find all cycle chains
cycleChains = []
for chain in self.chains:
# if the source vertex of the first chain equals to the destination vertex of the last
# chain, the chain is a cycle chain
if chain[ 0 ][ 0 ] == chain[ -1 ][ 1 ]:
cycleChains.append( chain )
# main.log.debug( 'Cycle chains: {}'.format( cycleChains ) )
# Get a set of vertices which are the first vertices of a cycle chain (excluding the first
# cycle chain), and these vertices are a subset of all cut-vertices
subsetOfCutVertices = []
if len( cycleChains ) > 1:
for cycleChain in cycleChains[ 1: ]:
subsetOfCutVertices.append( cycleChain[ 0 ][ 0 ] )
# main.log.debug( 'Subset of cut vertices: {}'.format( subsetOfCutVertices ) )
nonCutVertices = []
assert nonCutEdges is not None
for vertex in self.graphDict.keys():
if vertex in subsetOfCutVertices:
continue
vertexIsNonCut = True
for neighbor in self.graphDict[ vertex ][ 'edges' ].keys():
edge = [ vertex, neighbor ]
backwardEdge = [ neighbor, vertex ]
if edge not in nonCutEdges and backwardEdge not in nonCutEdges:
vertexIsNonCut = False
break
if vertexIsNonCut:
nonCutVertices.append( vertex )
# main.log.debug( 'Non-cut-vertices: {}'.format( nonCutVertices ) )
return nonCutVertices
except KeyError:
main.log.exception( "Graph: KeyError exception found" )
return None
except AssertionError:
main.log.exception( "Graph: AssertionError exception found" )
return None
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return None
def depthFirstSearch( self ):
"""
This function runs a depth-first search and gets DFI of each vertex as well
as generates the back edges
"""
try:
assert self.graphDict is not None and len( self.graphDict ) != 0
for vertex in self.graphDict.keys():
self.DFI[ vertex ] = -1
self.parentVertexInDFS[ vertex ] = ''
self.parentEdgeInDFS[ vertex ] = None
firstVertex = self.graphDict.keys()[ 0 ]
self.currentDFI = 0
self.backEdges = {}
if not self.depthFirstSearchRecursive( firstVertex ):
return main.ERROR
return main.TRUE
except KeyError:
main.log.exception( "Graph: KeyError exception found" )
return main.ERROR
except AssertionError:
main.log.exception( "Graph: AssertionError exception found" )
return main.ERROR
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return main.ERROR
def depthFirstSearchRecursive( self, vertex ):
"""
Recursive function for depth-first search
"""
try:
self.DFI[ vertex ] = self.currentDFI
self.currentDFI += 1
for neighbor in self.graphDict[ vertex ][ 'edges' ].keys():
edge = [ vertex, neighbor ]
backwardEdge = [ neighbor, vertex ]
if neighbor == self.parentVertexInDFS[ vertex ]:
continue
elif self.DFI[ neighbor ] == -1:
self.parentVertexInDFS[ neighbor ] = vertex
self.parentEdgeInDFS[ neighbor ] = backwardEdge
if not self.depthFirstSearchRecursive( neighbor ):
return main.ERROR
else:
key = self.DFI[ neighbor ]
if key in self.backEdges.keys():
if edge not in self.backEdges[ key ] and\
backwardEdge not in self.backEdges[ key ]:
self.backEdges[ key ].append( backwardEdge )
else:
tempKey = self.DFI[ vertex ]
if tempKey in self.backEdges.keys():
if edge not in self.backEdges[ tempKey ] and\
backwardEdge not in self.backEdges[ tempKey ]:
self.backEdges[ key ] = [ backwardEdge ]
else:
self.backEdges[ key ] = [ backwardEdge ]
return main.TRUE
except KeyError:
main.log.exception( "Graph: KeyError exception found" )
return main.ERROR
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return main.ERROR
def findChains( self ):
"""
This function finds all the chains in chain-decomposition algorithm
"""
keyList = sorted( self.backEdges.keys() )
vertexIsVisited = {}
self.chains = []
for vertex in self.graphDict.keys():
vertexIsVisited[ vertex ] = False
try:
for key in keyList:
backEdgeList = self.backEdges[ key ]
for edge in backEdgeList:
chain = []
currentEdge = edge
sourceVertex = edge[ 0 ]
while True:
currentVertex = currentEdge[ 0 ]
nextVertex = currentEdge[ 1 ]
vertexIsVisited[ currentVertex ] = True
chain.append( currentEdge )
if nextVertex == sourceVertex or vertexIsVisited[ nextVertex ]:
break
currentEdge = self.parentEdgeInDFS[ nextVertex ]
self.chains.append( chain )
return main.TRUE
except KeyError:
main.log.exception( "Graph: KeyError exception found" )
return main.ERROR
except Exception:
main.log.exception( "Graph: Uncaught exception" )
return main.ERROR