| # Copyright 2017 Open Networking Foundation (ONF) |
| # |
| # Please refer questions to either the onos test mailing list at <onos-test@onosproject.org>, |
| # the System Testing Plans and Results wiki page at <https://wiki.onosproject.org/x/voMg>, |
| # or the System Testing Guide page at <https://wiki.onosproject.org/x/WYQg> |
| # |
| # TestON is free software: you can redistribute it and/or modify |
| # it under the terms of the GNU General Public License as published by |
| # the Free Software Foundation, either version 2 of the License, or |
| # (at your option) any later version. |
| # |
| # TestON is distributed in the hope that it will be useful, |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| # GNU General Public License for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with TestON. If not, see <http://www.gnu.org/licenses/>. |
| # |
| # If you have any questions, or if you don't understand R, |
| # please contact Jeremy Ronquillo: jeremyr@opennetworking.org |
| |
| # ********************************************************** |
| # STEP 1: File management. |
| # ********************************************************** |
| |
| print( "STEP 1: File management." ) |
| |
| # Command line arguments are read. Args usually include the database filename and the output |
| # directory for the graphs to save to. |
| # ie: Rscript SCPFgraphGenerator SCPFsampleDataDB.csv ~/tmp/ |
| print( "Reading commmand-line args." ) |
| args <- commandArgs( trailingOnly=TRUE ) |
| |
| # Import libraries to be used for graphing and organizing data, respectively. |
| # Find out more about ggplot2: https://github.com/tidyverse/ggplot2 |
| # reshape2: https://github.com/hadley/reshape |
| print( "Importing libraries." ) |
| library( ggplot2 ) |
| library( reshape2 ) |
| library( RPostgreSQL ) # For databases |
| |
| # Check if sufficient args are provided. |
| if ( is.na( args[ 7 ] ) ){ |
| print( "Usage: Rscript SCPFswitchLat <database-host> <database-port> <database-user-id> <database-password> <test-name> <branch-name> <directory-to-save-graphs>" ) |
| q() # basically exit(), but in R |
| } |
| |
| # Filenames for output graphs include the testname and the graph type. |
| # See the examples below. paste() is used to concatenate strings. |
| errBarOutputFileUp <- paste( args[ 7 ], "SCPFswitchLat_", sep = "" ) |
| errBarOutputFileUp <- paste( errBarOutputFileUp, args[ 6 ], sep = "" ) |
| errBarOutputFileUp <- paste( errBarOutputFileUp, "_UpErrBarWithStack.jpg", sep = "" ) |
| |
| errBarOutputFileDown <- paste( args[ 7 ], "SCPFswitchLat_", sep = "" ) |
| errBarOutputFileDown <- paste( errBarOutputFileDown, args[ 6 ], sep = "" ) |
| errBarOutputFileDown <- paste( errBarOutputFileDown, "_DownErrBarWithStack.jpg", sep = "" ) |
| |
| print( "Reading from databases." ) |
| |
| con <- dbConnect( dbDriver( "PostgreSQL" ), dbname="onostest", host=args[ 1 ], port=strtoi( args[ 2 ] ), user=args[ 3 ],password=args[ 4 ] ) |
| |
| command <- paste( "SELECT * FROM switch_latency_details WHERE branch = '", args[ 6 ], sep="" ) |
| command <- paste( command, "' AND date IN ( SELECT MAX( date ) FROM switch_latency_details WHERE branch='", sep = "") |
| command <- paste( command, args[ 6 ], sep="" ) |
| command <- paste( command, "' )", sep="" ) |
| |
| print( paste( "Sending SQL command:", command ) ) |
| |
| fileData <- dbGetQuery( con, command ) |
| |
| # ********************************************************** |
| # STEP 2: Organize data. |
| # ********************************************************** |
| |
| print( "Sorting data." ) |
| |
| upAvgs <- c( fileData[ 'up_device_to_graph_avg' ], fileData[ 'role_reply_to_device_avg' ], fileData[ 'role_request_to_role_reply_avg' ], fileData[ 'feature_reply_to_role_request_avg' ], fileData[ 'tcp_to_feature_reply_avg' ] ) |
| upAvgsData <- melt( upAvgs ) |
| upAvgsData$scale <- fileData$scale |
| upAvgsData$up_std <- fileData$up_std |
| |
| colnames( upAvgsData ) <- c( "ms", "type", "scale", "stds" ) |
| upAvgsData$type <- as.character( upAvgsData$type ) |
| upAvgsData$type <- factor( upAvgsData$type, levels=unique( upAvgsData$type ) ) |
| |
| downAvgs <- c( fileData[ 'down_device_to_graph_avg' ], fileData[ 'ack_to_device_avg' ], fileData[ 'fin_ack_to_ack_avg' ] ) |
| downAvgsData <- melt( downAvgs ) |
| downAvgsData$scale <- fileData$scale |
| downAvgsData$down_std <- fileData$down_std |
| |
| colnames( downAvgsData ) <- c( "ms", "type", "scale", "stds" ) |
| downAvgsData$type <- as.character( downAvgsData$type ) |
| downAvgsData$type <- factor( downAvgsData$type, levels=unique( downAvgsData$type ) ) |
| |
| upAvgsData <- na.omit( upAvgsData ) # Omit any data that doesn't exist |
| downAvgsData <- na.omit( downAvgsData ) |
| |
| print( "Up Averages Results:" ) |
| print( upAvgsData ) |
| |
| print( "Down Averages Results:" ) |
| print( downAvgsData ) |
| |
| # ********************************************************** |
| # STEP 3: Generate graphs. |
| # ********************************************************** |
| |
| |
| print( "Generating fundamental graph data (Switch Up Latency)." ) |
| width <- 1 |
| if ( min( fileData[ 'up_end_to_end_avg' ] - upAvgsData$stds ) < 0 ) { |
| yMin <- min( fileData[ 'up_end_to_end_avg' ] + upAvgsData$stds ) * 1.05 |
| } else { |
| yMin <- 0 |
| } |
| yMax <- max( fileData[ 'up_end_to_end_avg' ] + upAvgsData$stds ) |
| |
| theme_set( theme_grey( base_size = 20 ) ) # set the default text size of the graph. |
| |
| mainPlot <- ggplot( data = upAvgsData, aes( x = scale, y = ms, fill = type, ymin = fileData[ 'up_end_to_end_avg' ] - stds, ymax = fileData[ 'up_end_to_end_avg' ] + stds ) ) |
| xScaleConfig <- scale_x_continuous( breaks=c( 1, 3, 5, 7, 9) ) |
| yLimit <- ylim( yMin, yMax ) |
| xLabel <- xlab( "Scale" ) |
| yLabel <- ylab( "Latency (ms)" ) |
| fillLabel <- labs( fill="Type" ) |
| theme <- theme( plot.title=element_text( hjust = 0.5, size = 28, face='bold' ) ) |
| |
| fundamentalGraphData <- mainPlot + yLimit + xScaleConfig + xLabel + yLabel + fillLabel + theme |
| |
| print( "Generating bar graph with error bars (Switch Up Latency)." ) |
| barGraphFormat <- geom_bar( stat="identity", width = width ) |
| errorBarFormat <- geom_errorbar( width = width ) |
| |
| title <- ggtitle( "Switch Up Latency" ) |
| result <- fundamentalGraphData + barGraphFormat + errorBarFormat + title |
| |
| |
| print( paste( "Saving bar chart with error bars (Switch Up Latency) to", errBarOutputFileUp ) ) |
| ggsave( errBarOutputFileUp, width = 10, height = 6, dpi = 200 ) |
| |
| |
| print( paste( "Successfully wrote bar chart with error bars (Switch Up Latency) out to", errBarOutputFileUp ) ) |
| |
| |
| print( "Generating fundamental graph data (Switch Down Latency)." ) |
| if ( min( fileData[ 'down_end_to_end_avg' ] - downAvgsData$stds ) < 0 ) { |
| yMin <- min( fileData[ 'down_end_to_end_avg' ] - downAvgsData$stds ) |
| } else { |
| yMin <- 0 |
| } |
| yMax <- max( fileData[ 'down_end_to_end_avg' ] + downAvgsData$stds ) |
| |
| mainPlot <- ggplot( data = downAvgsData, aes( x = scale, y = ms, fill = type, ymin = fileData[ 'down_end_to_end_avg' ] - stds, ymax = fileData[ 'down_end_to_end_avg' ] + stds ) ) |
| yLimit <- ylim( yMin, yMax ) |
| theme <- theme( plot.title=element_text( hjust = 0.5, size = 28, face='bold' ) ) |
| |
| fundamentalGraphData <- mainPlot + yLimit + xScaleConfig + xLabel + yLabel + fillLabel + theme |
| |
| print( "Generating bar graph with error bars (Switch Down Latency)." ) |
| barGraphFormat <- geom_bar( stat="identity", width = width ) |
| errorBarFormat <- geom_errorbar( width = width ) |
| |
| title <- ggtitle( "Switch Down Latency" ) |
| result <- fundamentalGraphData + barGraphFormat + errorBarFormat + title |
| |
| |
| print( paste( "Saving bar chart with error bars (Switch Down Latency) to", errBarOutputFileDown ) ) |
| ggsave( errBarOutputFileDown, width = 10, height = 6, dpi = 200 ) |
| |
| |
| print( paste( "Successfully wrote bar chart with error bars (Switch Down Latency) out to", errBarOutputFileDown ) ) |