big switch

n etwao

r

Ik s

Controller User Guide

Version 2011.04.19.0050-build.bigswitchcontroller.release

April 19, 2011 - Alpha

D B €Ty o =K =Y =T IO SRRSO PRROTUPTO 2
® L L. PrErEQUISITES .ueiiiiiiieeiitiie e ettt eee e ettt e ettt e e ettt e e e e bt e e e eeabeeeeeaseeeeaabeeeeessaeeeessaeeeanbaeaeannns 3
® 1.2.InStalling the CONTIOIIET covvviiiiecie ettt e saae e s aeesees 3
® 1.3, Alternative VM PlatfOrmsooouioiuiiieiie ettt et et 4

® 1.3.1. KVM (libvirt and Virt-manager)cccceeveeeieeeiieecie e esre e e s enee s 4

® 1.3.2. KVM (PrOXMOX VE) oiiieeiieeeiiie ettt et eee e eaee e et e e eearee e eeaaeeeseaeeeeenes 5

® 1.3.3. VMware Workstation, FUsion, or Playerccccccceevcieeeeiiiie e eeiee e 5

® 1.3.4. MICrOSOft HYPEI-V .ooiiiiieeetiee ettt e et e e e e aaa e e e s aveaeeaes 6

1.4, Initial bringup and ChECKcccvviiiee e e e 6
1.5. Connecting your switches to the controllercoeeeoiiiiiiiiee e 9

® 1.6. Upgrading an existing CONTIOIIErccoiiiiiiiieiieieeee e 9
® 1.6.1. Exporting configuration datacccceecuerierienienieie e 9

® 1.6.2. Performing the UPEradeceeeiieiiiiiiee ettt e 10

® 1.6.3. TroUDBIESHOOTING ...vviieiiiee et et e aae e e saaeeeeas 10

® 1.6.4. Restoring configuration dataccccceeeeiiiiieeiiiee e 10

® 1.7. New to this version, known issues, and ticketsccccoevvvrriiiiiiiiiiiiiieieece e 10

I 0o s [ol=Y o £ RN O USRS PURURUPUON 11
© D L. OPENFIOW ettt ettt e e e e e ettt e e e eaba e e e e eataeeeetteeeeetteeeeearaaeeeraaeans 11
® 2.2, Big Switch Controller architeCturecocoie it 12
® 2.3, COre APPIICATIONS .ooueiiieieieeiiesieeie ettt sttt sttt ettt et eeetesaeesaeesaeesbeenaeenneenneens 13

® 2.3.1. Learning SWItCHuuiiiiiiiie ettt et e e aaee e 14
R T B 1LY ol |V =Y =T SR 14
R T5 T Ko o] Lo -4V AP 15
® D 3.4 ROULING weveeeeitiie ettt ettt e ettt e et e e et e e e st e e e e sata e e e eataaeesasaeeeansaeeeenssaeeesasseeaans 15
® 2.3.5.StatiC FIOW ENTIY evviiiiiieieecee ettt et e e et eeaaae e e earaeeean 18
R 7 | (o OSSP PRRURRPRRRPRINY 19

R T V1YY o] W oY = T Vo < SRR PST USRI 20
N 700 R 1 Y o Yo [¥ T T o TSP 65
DG T Y=Y i U o USRS 21
G T Yol =TT o T - o AU 1 TSRS 21

R S O W = oY =T o ol TP STOPPTRUSI 21
D R I I ol Y ol =T o | USSR UPSRUN 21

S 9 I B A Vol ot I [o i 4 T Yo [YOO 22
® 4.1.2. Navigation and helpooeoiiiiiee e e e 22
® 4.1.3. CLl conveniences: pipes, watching commands, and other tricks 22
D O B o 0 V7Y o T o LRSS 24
R 208 W Y-41 0 W o' To Yo [N ofo ' ' =1 o -SSP 24
S N B« = N o =S OO P RSP 24
€ 4.2.2. AEDUG ittt bbb et aaeeaes 25
® £.2.3. ENADLE it et aaeeaes 25
® A2.4, @RI it e b e e b e raeenaes 26
S N T o Y=Y I RSO SPR 26

big switch

networlks
© 4.2.6. LOGOUL tieiiiiieiieiiieiie ettt stte sttt ettt ettt ettt b ettt et st at e ae e be e beenbean 27
® 4.2.7. ShOW <KEYWOLAD ..oiiiiiiiiiiiiiecciie ettt ettt e ettt e et e e saaeenae e saaeeanas 28
® 4.2.7.1. ShOW DUNALES .coiciiiiiiiiiieiiie ettt 28
® 4.2.7.2. ShOW CONEIG ooiiiiiiiiiiiiiiieiece e 29
® 4.2.7.3.ShOW INterfacCes ..coiiiiiiiiiiiiecieeee e 30
® 4.2.7.4. ShOW L1OGGING tiriiiiiiiiiiiieitieieeie ettt e 31
® 4.2.7.5.show running—config ... 32
® 4.2.7.6. show startup—config ... 32
® 4.2.7.7.ShowW teCh=SUPPOTLL .cocceriiriiiieieeie e 33
® [.2.7.8. SHOW VEISION .iriiiiiieiiiiieiieiieie et ettt 34
® 42.8. show <database ODJeCt> ... 35
® 42.8.1.show cONtroller—N0Ode ...cccooiiriieniieeriieenieenieesieesieesiees 35
® 4.2.8.2. ShOW F£lOW—ENTIY tiociiriiiiiiiieiiieeiieeiteeseeesre e sre e sbee e s 35
® 4.2.8.3. ShOW NOST coiiriiiiiiiiiee st s 35
® 4.2.8.4.ShOW LiNK oiiiiiiiiiiiiiiiiiiiieeiie ettt sve e sae s sae e saeesaree s 37
® 4.2.8.5. SNOW POIT tioiiiiiiiiiieeetee e e e 37
® 4.2.8.6.ShOW SWItCh .coiiiiiiiiiiiicc e 38
® 42.8.7.show <object> <id> StatsS .ccccevcevieeiee i 44
S SR T ob ok Yo = OO PR PP PTUPPROP 48
® 4.3, Enable Mode COMMANGS ...cociiiiiiiiieiiie ettt st esabeesaee e 53
R 701 B 01U 8 o Vo B Y = USRS 53
S 9 B B o T o B il R e 1 ol = YOO 54
R B B T o) o 2RSSR 54
B B B ol I oY = PRSPPI 55
® 4.4, Config MOdE COMMANTS ..cueeriiiiieiieiieie ettt ettt ettt et st saee s reesbeenaeenneenneens 56
R 3 W oToY o o o J M K Y ol o Lo Yo L= YRS 58
O A A2 FL1OW—ENETY iiiiiiiiiiiiieeiie sttt sttt sttt sttt e nan e naes 58
B B o Vo Y= SRR 61
O B I 5 o 1 -SSR 62
R N T o To X A OSSPSR 63
® A4.6. SWITCOR it e naes 64
S Oy Yo TSSO 64
O D REST AP oottt e et e e e e et e e e e ea—e e e ee——aeeataeeeea—aeeearaaeeatbeeeearreeeaareeeans 65
T I 1Y o T BTt i e o T USSP 65
® 5.2, QUETYING TEEIMS eiiiiiiiieeeitee sttt ettt ettt ettt s it e bt e e st e e sabe e sabeesabeesnseesabeeeneesnns 66
T TR O T o [=g | =T o SR 68
® 5.4, UPAAtiNgG ILEBIMS .eeiiiiiiiiiee ettt et e et e e e st e e e e st e e e e e aaae e e sataeeeesteeeseasaaeesnsaeaans 69
R o T 1= 1o Y= =T o o OSSO SR PP SURUN 69
® 5.6.StOrING DAta BlODS ..oiiieiiee et et e et eeaa e e e eraaaaaas 69
® 5.7.RetrieViNg STats DAt ..ccccciieiiieiiie ettt et e e sbaeeaae e 70
® 5.8 ErTOr HANAIING .eoeeeiieiiie ettt ettt ettt sbe e beesbeeaeennesnneens 73
® 5.9, SAMPIE COUR .iotiiiiiieiieeciee ettt ettt e et e et e st e et e e s aeesabeesabeesareesnseesnteeanseesnsaeeseennes 74
T T B 2 o o o SR 74
® 5.9.2. Bash Shell With CUFlooiiiii e 76

1. Getting started

|

big switch

Big Switch Controller is bundled in two formats:

® avirtual hard disk image that can be installed and booted on a virtual machine platform
® an upgrade package that can be used to upgrade all the software in an existing controller

This section will guide you through the procedures of installing, getting started with, and upgrading Big
Switch Controller.

1.1. Prerequisites

While the controller is known to work on a variety of VM platforms, we strongly recommend you use
VMware vSphere Hypervisor (ESXi) unless you are an expert with some other platform.

VMware ESXi host:
The following resources are required on the host:

® memory: 1024 MB
® disk space: 20 GB
® network: one virtual network interface

The virtual network interface should be bridged to a host interface that is connected to a non-OpenFlow
network.

VMware vSphere Client:

Install the vSphere Client tool (included with ESXi) onto a Windows machine to administer the controller
VM running on your ESXi host.

VMware ovftool:

Install ovftool onto your laptop or server to transfer the controller virtual disk image to the ESXi host and
install it.

1.2. Installing the controller

Download the controller archive bigswitchcontroller.zip into a directory, and unzip it. The files
in the archive will be extracted into a new subdirectory called bigswitchcontroller-VERSION
where VERSION is the full version identifier of the controller virtual disk image.

Assuming you have configured your VMware ESXi host my .esx.host with a virtual network called My
Control Network, and that you can loginto the host as root, run ovftool as follows:

http://www.vmware.com/products/vsphere-hypervisor/
http://communities.vmware.com/community/vmtn/vsphere/automationtools/ovf

big switch
TR s

n et w oI 5

$ ovftool --name=bigswitchcontrollerl --net:bridged="My Control
Network" bigswitchcontroller.vmx vi://root@my.esx.host

Opening VMX source: bigswitchcontroller.vmx

Opening VI target: vi://root@my.esx.host/

Deploying to VI: vi://root@my.esx.host/

Disk Transfer Completed

Completed successfully

This will transfer the controller virtual disk image to the ESXi host and create a new VM named
bigswitchcontrollerl.

If you don't remember the name of your virtual network, run the same ovftool command without the
—-net option to see a list of all networks on the ESXi host (target):

$ ovftool bigswitchcontroller.vmx vi://root@my.esx.host
Opening VMX source: bigswitchcontroller.vmx
Opening VI target: vi://root@my.esx.host/
Error: No network mapping specified
OVF networks:
bridged
Target networks:
My Control Network
Some Other Network

After you finish transferring the virtual disk image and creating the VM, open vSphere Client and locate
the controller VM in the inventory. Power on the controller VM, and switch to the Console tab to access
the VM console.

1.3. Alternative VM platforms

This section contains tips for running the controller on an alternative VM platform, for users who are
expert in one of these platforms. If you are using VMware ESXi, skip to Initial bringup and sanity check
below.

1.3.1. KVM (libvirt and virt-manager)

First use your Linux distribution's tools for setting up a bridge interface on the host; these instructions
assume that a bridge br0 exists with the correct physical network interface enslaved. To create bridge
br0 on an Ubuntu or Debian server with physical interface eth0O, modify
/etc/network/interfaces, replacing the eth0 configuration with something like:

remove the existing ethO interface

auto bro0

iface br0 inet static

copy your existing address, netmask, gateway here
bridge ports eth0

big switch
ks

networ 5

and then run sudo /etc/init.d/networking restart to apply the changes. Note this will not
work if the address info is present on both eth0 and br0. This can also work with dhcp.

You may need to install virtinst tools:

$ sudo apt-get install virtinst

To create the controller VM, run the following commands (substituting version for some identifier that
keeps VM disk images and domain definitions separate). It is important to make sure you do not use the
same name for these images: doing so can lead to multiple VMs sharing a single disk image, and that will
lead to disk corruption.

$ sudo cp bigswitchcontroller.vmdk
/var/1lib/libvirt/images/bigswitchcontroller-<version>.vmdk
$ sudo virt-install --connect gemu:///system --virt-type kvm \
--import --noautoconsole --name bigswitchcontroller-<version>
--ram 1024 \
--network bridge=br0,model=virtio \
--disk
path=/var/lib/libvirt/images/bigswitchcontroller-<version>.vmdk, forme

If you get an error message does not support domain type 'kvm', check that the kernel
modules are loaded by running 1smod | grep kvm. You should see at least kvm and one of
kvm_intel or kvim_amd depending on the host CPU.

If you are setting up KVM on a machine for the first time, make sure the CPU supports virtualization
extensions and that they are enabled in the BIOS. Many machines older than 2007 do not support KVM.

See the KVM FAQ for troubleshooting tips.

1.3.2. KVM (Proxmox VE)

Copy bigswitchcontroller.vmdk to the Proxmox host, and log into the host as root via SSH. Choose an
unused VMID and MAC address for the controller VM. On the host, run:

mkdir -p /var/lib/vz/images/VMID

cp bigswitchcontroller.vmdk /var/lib/vz/images/VMID/

gm create VMID --name bigswitchcontroller --onboot yes \
—--memory 1024 --ostype 126 --vlan0 virtio=MAC --bootdisk ide0O \
--ide0 local:VMID/bigswitchcontroller.vmdk

H* % H

Be sure to substitute your chosen values for VMID and MAC above.

1.3.3. VMware Workstation, Fusion, or Player

The controller archive includes a configuration file bigswitchcontroller.vmx that can be opened
directly in VMware Worksation, Fusion or Player.

http://www.linux-kvm.org/page/FAQ

big switch

1.3.4. Microsoft Hyper-V

Convert bigswitchcontroller.vmdk to VHD format using Microsoft System Center Virtual Machine Manager
or a third-party tool such as Winlmage.

Using the Hyper-V Manager, create a new virtual machine. In the setup wizard, set the RAM size to 1024
MB. Attach the virtual hard disk to the converted VHD image. Leave other settings unchanged. When the
wizard completes, remove the existing network adapter (if any) and create a new "Legacy Network
Adapter" (Big Switch Controller does not currently include Hyper-V a driver for the normal Hyper-V
network adapter).

1.4. Initial bringup and check

The first time you boot Big Switch Controller, log in as user admin on the main console (no password is
required). You will be prompted to set the admin login password and configure the management
network interface (eth0) as well as configure the timezone and other options. For example:

Now log in as user admin and run some commands to check the system is up and running. For example:

192.168.2.129> show version

Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)
192.168.2.129> show interfaces

ethO Link encap:Ethernet HWaddr 52:54:00:25:e3:9b
inet addr:192.168.2.129 Bcast:192.168.2.255 Mask:255.255.255.0
inet6 addr: fe80::5054:ff:fe25:e39b/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:218435 errors:0 dropped:0 overruns:0 frame:0
TX packets:136260 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:34582552 (34.5 MB) TX bytes:27675992 (27.6 MB)

http://www.winimage.com/

big switch

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:1614375 errors:0 dropped:0 overruns:0 frame:0

TX packets:1614375 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:457096230 (457.0 MB) TX bytes:457096230 (457.0 MB)

192.168.2.129> show switch
Switch DPID Alias Active Last Connect Time
IP Address Socket Address Max Packets Max Tables

pronto-3290 False 2011-03-28 15:24:52 192.168.2.31

/192.168.2.31:33083 256 3

00:00:00:00:00:37:80:01 pronto-3780 True 2011-03-28 15:24:51
192.168.2.32 /192.168.2.32:47260 256 3
00:00:00:00:00:73:28:02 netgear-1 True 2011-03-28 15:24:52
192.168.2.28 /192.168.2.28:40924 256 3
00:00:00:00:00:73:52:01 netgear-2 True 2011-03-28 15:24:51
192.168.2.52 /192.168.2.52:57690 256 3
00:00:00:00:00:d0:d0:03 wireless-ap-1 True 2011-03-28 15:24:56
192.168.2.34 /192.168.2.34:57244 256 2
00:00:00:00:00:d0:d0:05 wireless-ap-2 True 2011-03-28 15:24:56
192.168.2.35 /192.168.2.35:54597 256 2
00:00:00:30:48:£f9:cd:0b vswitch True 2011-03-28 15:24:53
192.168.2.152 /192.168.2.152:44946 256 2
00:0a:00:21:f7:de:e9%9:00 hp-5400 True 2011-03-28 15:25:10
192.168.2.102 /192.168.2.102:62122 256 2
00:0a:00:24:a8:c4:69:00 hp-6600 True 2011-03-28 15:25:10
192.168.2.101 /192.168.2.101:43138 256 2

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 desc

Switch Serial # Vendor Make

Model SW Version

——————— P R e B
CN9202M063 HP-Labs HP Procurve 5400z1/3500y1/6600 series

hp6600-101 2.02v

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 flow

Switch Bytes Packets Dur(s) Cookie In Port Src MAC Dst
MAC Ether Type Src IP Dst IP Protocol
Src Port Dst Port

102 1 3 lswitch 29 (5) 00:11:43:d8:7a:62
c4:2c:03:02:5a:11 ip(2048) 199.59.148.139 192.168.10.237 *
* *

hp-6600 0 0 4 lswitch 43 (19) c4:2c:03:02:5a:11

big switch

networlkhks

00:11:43:d8:7a:62 arp(2054) 192.168.10.237 192.168.10.1 *
* *

hp-6600 78 220007 6952 lswitch 29 (5) 00:11:43:d8:7a:62
10:9a:dd:4b:c4:dd ip(2048) 192.168.2.152 192.168.10.248 *

* *

hp-6600 0 1 1 lswitch 43 (19) 10:9a:dd:4b:e5:cb
00:11:43:d8:7a:62 ip(2048) 192.168.10.242 98.136.48.221 *

big switch

3

1.5. Connecting your switches to the controller

The OpenFlow connection between a switch and the Big Switch Controller is initiated by the switch. The
switch configuration steps will vary based on the type of switch - essentially, the switch needs to be
configured with the IP address of the Big Switch Controller and the port (6633) that the OpenFlow
daemoniis listening to on the controller.

1.6. Upgrading an existing controller

Beginning with version 2011.03.28 of Big Switch Controller, the virtual disk has room for two complete
installations of the controller software, in separate partitions. Initially partition 1 contains the controller
software and partition 2 is empty. You can install a new release into the unused partition of an existing
controller rather than installing a new virtual machine from scratch.

The Big Switch Controller upgrade feature

® reduces the need to interact with the virtual machine platform configuration interface, which may
be accessible only by a separate administrative staff

® migrates first-time setup parameters to the new installation: network interface configuration (IP
address, gateway, etc.), admin user password, hostname, NTP server, time zone, SSH host keys

® minimizes downtime by performing most of the upgrade steps in the background while the
controller continues to work normally; the final reboot step usually takes less than a minute

® keeps the previous installation available as a fail-safe (contact Big Switch support for assistance
with rolling back to a previous installation)

1.6.1. Exporting configuration data

The upgrade process does not migrate configuration data from the existing installation to the new one,
except for the first-time setup parameters listed above. Therefore whether you use the upgrade feature
or reinstall the controller from scratch, if you want to preserve the controller's configuration, you must
export and store it elsewhere prior to the upgrade and reapply the configuration afterwards.

Currently the configuration data you may want to save include static flow table entry definitions, switch
aliases and host aliases. To display or export this configuration data, run the show running-config
command. This output should be saved in a file outside the controller.

big switch
ks

networ 5

192.168.2.129# show running-config
1

! Big Switch Controller 0.1

(2011.03.28.1314-build.bigswitchcontroller.release)
!

.

switch 00:00:00:00:00:00:00:01
flow-entry deny-hl1l-h31
active True
ether-type 2048
src-ip 10.0.0.11
dst-ip 10.0.0.31

.

switch 00:00:00:00:00:00:00:02
1

.

switch 00:00:00:00:00:00:00:03

1.6.2. Performing the upgrade

(log in as admin; stash away current running-config; debug bash; scp or wget
bigswitchcontroller-upgrade.pkg; sudo upgradebsc bigswitchcontroller-upgrade.pkg; look for "successfully
installed" message; sudo reboot)

1.6.3. Troubleshooting
(debug using the vm console if the controller is unreachable after rebooting)

1.6.4. Restoring configuration data

Once the new controller is up and running, use the copy command with a URL argument (either an FTP
server or an HTTP server) to copy the file back into the running-config.

1.7. New to this version, known issues, and tickets

New to this version:

This version of the controller now supports an in-VM upgrade (but only from version
2011.04.05.1050-build.bigswitchcontroller.release/). If you have an earlier version that 2011.04.05, then
you must reinstall the entire controller VM.

This major additions to this version are:

® "show host" now indicates whether a host has been found at multiple places in the network. This
happens in a network with a mix of OpenFlow-enabled and non-OpenFlow-enabled switches.

® "trace" command and "show switch <dpid> trace" command that shows controller <-> switch
messages in varying levels of detail

® statistics collection and graphing - the controller now collects a few set of statistics, including the
number of OpenFlow packet-in messages received from switches and the number of flow-mods

big switch

sent by the controller to the switches. It also tracks system information such as memory usage and
CPU utilization. These statistics are presented in a web-based graphical user interface.

Deployment Considerations:

The Big Switch Controller has support for VLANs and mixed networks with a combination of
OpenFlow-enabled and non-OpenFlow switches. There are a number of considerations to review when
deploying with VLANSs or in a mixed network:

® What VLAN mode the switch is configured for - in the HP switches, either virtualized mode or
aggregation mode can be enabled.
Whether links are tagged or untagged
Whether spanning tree is enabled and whether the spanning tree information is available across a
mixed network.

We recommend a quick overview of your network/VLAN topology before deploying the controller into
mixed networks or networks with VLANSs.

Known issues:
Tickets:

® #1 - flow entry name completion in config mode completes flow entries for other switches

® #13 - deleting a switch doesn't delete flow entries
® The workaround is to delete the flow entries first and then delete the switch

® #48 - |log files can be too large for show logging
® The workaround is to use the "debug bash" command and cd to /opt/bigswitch and find .
-name *.log to get the specific log file.

® #55 - switch active status in "show switch" may not be accurate
® The "show switch realtime" command shows accurately what switches are connected to
the controller.

® #63 - controller send no reply to HELLO message

® #64 - display shows incorrect byte values on NEC switches
2. Concepts

2.1. OpenFlow

OpenFlow defines a way for networking switches to receive detailed packet-handling instructions from an
external controller. These instructions have match rules that instruct the switch to match specific frames,
and actions that instruct the switch what actions to take on those packets.

The match rules can match a variety of layer 2 and layer 3 fields in the header, including
source/destination MAC addresses, source/destination IP addresses, port numbers, and others. The rules

big switch

can also wildcard any of these fields (called wide flow entries as they can match lots of different traffic),
or the rules can specify a value for every field (called narrow flow entries as they can match only very
specific traffic).

The actions can forward to a port or multiple ports or to drop the packet. Before forwarding, the switch
can rewrite parts of the header.

In order for a switch to receive these instructions (called flow entries or flow mods), the switch must have
OpenFlow enabled - effectively, it must implement the agent side of the OpenFlow protocol. An external
controller implements the controller side of the OpenFlow protocol.

A switch can also ask the controller how to handle a given packet for which it has no matching rule. In
response, a controller can tell the packet how to forward the packet, and it can dynamically insert a flow
mod to the switch (or even multiple flow mods to multiple switches) tells the switch how to handle
subsequent packets.

Based on OpenFlow's simple concept, a controller can implement a variety of applications/logic to flexibly
provide connectivity and security in a network.

For more information, please refer to the OpenFlow 1.0 specification.

2.2. Big Switch Controller architecture
Definitions:

® controller system: a set of cooperating controller nodes that are managing a set of switches in a
network.

® controller node: refers to a single virtual machine that runs the controller software. In this release,
a controller-system can only have one controller node.

® Beacon-based controller process or just Beacon: the component in the controller node that speaks
the OpenFlow protocol to the switches. This component is based on the open-source, Java-based
Beacon controller. Beacon also allows different applications to plug into it to extend the
functionality of the controller.

® CLI: the component that allows for configuration of the controller and viewing of data from the
switches and the controller.

® WebUI: the component that allows for viewing of statistics collected from the switches and the
controller.

® Django: the component that provides a REST API that is used by the CLI and can be leveraged by
third parties for integration.

® DB: persistent storage of configuration as well as observed hosts, links, switches, and ports and
their accompanying statistics.

® Statd: the component that collects system and network statistics.

big switch

netwao

P,
!

" i

n =

r

Ik s

Fachiehae

2.3. Core applications

A number of applications are enabled by default in the controller. The most relevant ones from the user's
perspective are the following:

Learning Switch
Device Manager
Topology
Routing

Static Flow Entry

To check the status of all these applications, use the show bundles command:

Active
Active
Active
Active
Active
Active

1
3
7
16
23
37

net

net.
net.
net.
net.
com.

10.0.2.15# show bundles | grep -e topo -e device -e outing -e
static -e learning
.beaconcontroller.routing

beaconcontroller.learningswitch
beaconcontroller.routing.apsp
beaconcontroller.devicemanager
beaconcontroller.topology
bigswitch.beacon.staticflowentry

The applications can be started and stopped using the bundles command. However, this should not be
done unless instructed by Big Switch Networks. By default, all applications should be enabled.

Stopping/starting applications will have an impact on the correctness of forwarding in the network.

The applications will be covered below and will refer to the following example network:

http://confluence.bigswitch.com:8080/download/attachments/3506342/Arch_statd.png

big switch

networlkhks

y

2.3.1. Learning Switch

The Learning Switch application allows any switch that is connected to the controller to support
forwarding by learning the ports for given hosts on the network and inserting flow entries into the switch
on demand.

When a switch sees a packet for which it has no rule, it then gives that packet to the controller for
examination. The Learning Switch application looks in its own per-switch tables and learns the source
MAC address is located on the ingress port of the packet. The application then looks to see if it knows the
port for the destination MAC address. If it does, then it creates a flow mod that is an exact match for the
packet and it inserts that flow mod into the switch with a very low timeout (less than 10 seconds). If it
does not know where the destination MAC address lives, it floods the packet out to all ports.

In the example above, when h11 pings h12, the following flow mods can be seen on the s1 switch:

10.0.2.15# show switch 00:00:00:00:00:00:00:01 flow brief

Cookie Src MAC Dst MAC Src IP Dst IP
Protocol Src Port Dst Port

——————— R R Rl Rl EES
00:00:00:00:00:0c 00:00:00:00:00:0b 10.0.0.12 10.0.0.11 icmp 0
lswitch 00:00:00:00:00:0b 00:00:00:00:00:0c 10.0.0.11 10.0.0.12

icmp 8

Note the Cookie column that shows the source of the flow mod as being the Learning Switch
application.

2.3.2. Device Manager

The Device Manager application is a monitoring application that learns about host locations across the
network and inserts host information into the database. The hosts can be viewed from the CLI using the
show host command. The host information is also used by the Routing application.

Warning: The Routing application will not function properly if the Device Manager application is not
started, and packets will not be forwarded if Routing is started without Device Manager.

————

big switch

When the Device Manager application is running, hosts will be populated in the database like below:

10.0.2.15(config)# show host
MAC Address Switch ID Ingress Port IP Address
Name

00:00:00:00:00:00:00:01 1 0.0.0.0
00:00:00:00:00:0c 00:00:00:00:00:00:00:01 2 0.0.0.0
00:00:00:00:00:1f 00:00:00:00:00:00:00:03 1 0.0.0.0
00:00:00:00:00:20 00:00:00:00:00:00:00:03 2 0.0.0.0

Note that host 11 (which has a MAC address of 0b) is located on switch 1, port 1 (as indicated in our
topology). Similarly, host 31 (MAC address of 1f) is located on switch 3, port 1.

2.3.3. Topology

The Topology application is a monitoring application that learns about link information connecting the
switches and inserts that link information into the database. The links can be viewed from the CLI using
the show link command. The link information is also used by the Routing application (just as the host
information is).

Warning: The Routing application will not function if the Topology application is not started, and packets
will not be forwarded if Topology is started without Topology.

When the Topology application is running, links will be populated in the database like below:

10.0.2.15(config)# show link

Src Switch DPID Src Port Dst Switch DPID Dst Port
——————————————————————— P]
00:00:00:00:00:00:00:01 3 00:00:00:00:00:00:00:02 1
00:00:00:00:00:00:00:02 1 00:00:00:00:00:00:00:01 3
00:00:00:00:00:00:00:02 2 00:00:00:00:00:00:00:03 3
00:00:00:00:00:00:00:03 3 00:00:00:00:00:00:00:02 2

2.3.4. Routing

Note: the Routing application is temporarily disabled for this release. Forwarding across the network will
still function, but the system will rely on the learning switch application for this.

The Routing application uses the host and link information from the Device Manager application and the
Topology application to develop a graph of the network and its connectivity. When a switch sees a packet
for which it has no rule, it forwards the packet to the controller, and the Routing application will compute
the shortest path across the network for the packet to reach its destination. With the Routing application,
the controller is serving as a centralized routing table for the network.

In the example above, if pings are initiated from all hosts to all other hosts, then a combination of flow
mods from the Learning Switch application and the Routing application will be inserted into the switches.

big switch

For example, below is the output from issuing show switch <dpid> flow brief for all three
switches in the example network. Note switch 1 and switch 3 have a combination of flow mods marked
routing and 1switch while switch 2 has flow mods only with 1switch

Executing

show switch 00:00:00:00:00:00:00:01 flow brief; show switch
00:00:00:00:00:00:00:02 flow brief; show switch
00:00:00:00:00:00:00:03 flow brief

Cookie Src MAC Dst MAC Src IP Dst IP
Protocol Src Port Dst Port

——————— B e R R EE
00:00:00:00:00:1f 00:00:00:00:00:0b 10.0.0.31 10.0.0.11 arp-rep(2)
0 0

routing 00:00:00:00:00:20 00:00:00:00:00:0b 10.0.0.32 10.0.0.11
arp-rep(2) 0 0

routing 00:00:00:00:00:1f 00:00:00:00:00:0c 10.0.0.31 10.0.0.12
arp-rep(2) 0 0

routing 00:00:00:00:00:20 00:00:00:00:00:0c 10.0.0.32 10.0.0.12
arp-rep(2) 0 0

routing 00:00:00:00:00:0c 00:00:00:00:00:0b 10.0.0.12 10.0.0.11
arp-rep(2) O 0

lswitch 00:00:00:00:00:0c 00:00:00:00:00:1f 10.0.0.12 10.0.0.31
arp-req(l) O 0

lswitch 00:00:00:00:00:0c 00:00:00:00:00:20 10.0.0.12 10.0.0.32
arp-req(l) O 0

routing 00:00:00:00:00:0b 00:00:00:00:00:0c 10.0.0.11 10.0.0.12
arp-req(l) O 0

lswitch 00:00:00:00:00:0b 00:00:00:00:00:1f 10.0.0.11 10.0.0.31
arp-req(l) O 0

lswitch 00:00:00:00:00:0b 00:00:00:00:00:20 10.0.0.11 10.0.0.32
arp-req(l) O 0

Cookie Src MAC Dst MAC Src IP Dst IP
Protocol Src Port Dst Port

——————— B] R R EE
00:00:00:00:00:1f 00:00:00:00:00:0b 10.0.0.31 10.0.0.11 arp-rep(2)
0 0

lswitch 00:00:00:00:00:20 00:00:00:00:00:0b 10.0.0.32 10.0.0.11
arp-rep(2) 0 0

lswitch 00:00:00:00:00:1f 00:00:00:00:00:0c 10.0.0.31 10.0.0.12
arp-rep(2) 0 0

lswitch 00:00:00:00:00:20 00:00:00:00:00:0c 10.0.0.32 10.0.0.12
arp-rep(2) 0 0

lswitch 00:00:00:00:00:0b 00:00:00:00:00:1f 10.0.0.11 10.0.0.31
arp-req(l) O 0

lswitch 00:00:00:00:00:0b 00:00:00:00:00:20 10.0.0.11 10.0.0.32
arp-req(l) O 0

lswitch 00:00:00:00:00:0c 00:00:00:00:00:1f 10.0.0.12 10.0.0.31
arp-req(l) O 0

lswitch 00:00:00:00:00:0c 00:00:00:00:00:20 10.0.0.12 10.0.0.32

big switch
networks
arp-req(l) O 0

Cookie Src MAC Dst MAC Src IP Dst IP
Protocol Src Port Dst Port

——————— R Bl et EESEEEEE B
00:00:00:00:00:0b 00:00:00:00:00:1f 10.0.0.11 10.0.0.31 arp-req(l)

0 0

routing 00:00:00:00:00:0b 00:00:00:00:00:20 10.0.0.11 10.0.0.32
arp-req(l) 0 0

routing 00:00:00:00:00:0c 00:00:00:00:00:1f 10.0.0.12 10.0.0.31
arp-req(l) O 0

routing 00:00:00:00:00:0c 00:00:00:00:00:20 10.0.0.12 10.0.0.32
arp-req(l) O 0

lswitch 00:00:00:00:00:20 00:00:00:00:00:0b 10.0.0.32 10.0.0.11
arp-rep(2) O 0

lswitch 00:00:00:00:00:20 00:00:00:00:00:0c 10.0.0.32 10.0.0.12
arp-rep(2) 0 0

routing 00:00:00:00:00:20 00:00:00:00:00:1f 10.0.0.32 10.0.0.31
arp-req(l) O 0

lswitch 00:00:00:00:00:1f 00:00:00:00:00:0b 10.0.0.31 10.0.0.11
arp-rep(2) 0 0

lswitch 00:00:00:00:00:1f 00:00:00:00:00:0c 10.0.0.31 10.0.0.12
arp-rep(2) 0 0

big switch
networks

routing 00:00:00:00:00:1f 00:00:00:00:00:20 10.0.0.31 10.0.0.32
arp-rep(2) 0 0

2.3.5. Static Flow Entry

The Static Flow Entry application inserts statically defined flow entries created by the user into the
switches. Flow entries can be defined in the CLI with custom priority and cookie fields, and matches can
include wildcards for any fields (support for both narrow and wide flow entries). Actions can be a list of
multiple output actions.

The Static Flow Entry application can override or supplement the default connectivity provided by the
Learning Switch and Routing applications.

For example, in the network above, the Learning Switch application can provide connectivity for all hosts
to all others hosts. However, suppose the user wanted to block pings from h11 to h31. The following flow
entry could be defined:

10.0.2.15(config)# switch 00:00:00:00:00:00:00:01
10.0.2.15(config-switch)# flow-entry deny-hl1-h31
10.0.2.15(config-flow-entry)# src-ip 10.0.0.11
10.0.2.15(config-flow-entry)# dst-ip 10.0.0.31
10.0.2.15(config-flow-entry)# ether-type 2048
10.0.2.15(config-flow-entry)# active True
10.0.2.15(config-flow-entry)# end

Recall that the OpenFlow protocol specifies that if no action is specified, as in this flow entry, packets
matched by the flow are dropped.

This static flow entry would appear like this on the switch:

10.0.2.15# show switch 00:00:00:00:00:00:00:01 flow brief
Cookie Src MAC Dst MAC Src IP Dst IP Protocol
Src Port Dst Port

* * 10.0.0.11 10.0.0.31 * * *

Now traffic between h11 and h31 is blocked.

The Static Flow Entry application works by continually reasserting the flow entries to the switches every
10 seconds with a hard timeout of 30 seconds. If a flow entry is modified or deleted, then the old flow
entry will expire in 30 seconds. In this way, the application ensures only the intended flow entries are on
the switches.

Note that because of this design, the packet/byte counters for the static flow entries are continually reset.
This limitation will be addressed in future releases.

big switch

2.4. Statd

Statd is a daemon module running within the controller VM to collect system and OF network statistics.
Statd was designed with extensibility in mind. It is a simple plugin framework with four types of pluggable
python modules, collectors, formatters, outputters, and throttlers.

® Collectors implement a collect() function and publish data by invoking either addControllerData()
or addSwitchData() functions. Currently, two collectors are built into the VM.
® osStats is an OS statistics collector that gathers CPU, memory, and swap statistics.
® ofStats is an Open-Flow statistics collector that gets the number packetins and flowMods
per switch.
® Formatters implement a format() function and return the formatted string.
® JsonFormatter is the lone formatter supported in this release.
® Qutputters implement a post() function.
® RestOutput is the lone outputter supported in this release.
® Throttler implement a throttle() function that throttles the amount of event data that is published.
Throttlers are assigned to Outputters and are optional. A throttler name and rate is required.
® |eakyBucketThrottler is the lone throttler supported in this release.

/opt/bigswitch/statd/statd.conf is the configuration file used by the statd to determine its behavior. Here
is a sample statd.conf:

big switch

networlkhks

{
"logLevel": "info",{ "logLevel": "info",
"logFile": "/opt/bigswitch/statd/log/statd.log",
"input": [
{
"name":"OsStats",
"period":60
}I
{
"name":"0OfStats",
"period":5
}I
{
"name" : "LogCollector",
"period":10,
"level":"info",
"module": "beacon"
}
1,
"output": [
{
"name" : "RestOutput"”,
"period":15,
"formatter":"Json",
"throttler":"LeakyBucketThrottler",
"stats":"vl/stats/default",
"log":"vl/events/default"
}
1,
"formatter": [
{
"name" :"Json"
}
1,
"throttler": [
{
"name" : "LeakyBucketThrottler",
"rate":10
}
1
}

The "period" field in each entry is in seconds and determines the execution frequency for each module.

3. WebUI reference

3.1. Introduction

|

big switch

networks
In the current release, webUI only supports the viewing of system and OF-related statistics.
On the top of each page, a time range can be selected by specifying the start and end time, or one of the
shortcut links, 1hr, 1day, and 1wk, which means the last selected interval (i.e. 1hr means the last hour). A
"Refresh" button is at the top right corner to submit the request.
The system statistics include two time-series charts, Memory Usage and CPU Usage. Memory usage chart
trends the VM's used memory, free memory, and used swap over a selected period of time. The y-axis is
in absolute amount. CPU usage chart trends the VM's cpu usages such as system, user, nice, and idle. The
y-axis is in percentage.
The OF statistics include packetIn rate and flow-mod rate per switch over a specified period of time and

the corresponding CDF chart. In addition to the time selector on the top of the page, a drop-down switch
selector is added to the page to specify the target switch.

3.2. Setup

The controller's web server listens on TCP port 8000. By default, the VM's firewall blocks the port. The
controller VM's administrator must open the port in order to access the web Ul.

The procedure to open the firewall:

1. login as admin

2. open the linux shell, "debug bash"

3. permit port 8000, "sudo ufw allow 8000/tcp"

3.3. Screen Captures
[|

— lrig wwsitch | | I

aommin bk awitch | |

—r m—

System Graphs
OpenFlow Graphs

4. CLI reference

4.1. CLI concepts

big switch

4.1.1. Access and modes

The CLI can be accessed through the console window of the virtual machine or by using ssh to connect to
the virtual machine. Logging in as the admin user gives access to the CLI.

The admin user will be logged into the CLI in login mode. The prompt will have a > to indicate this mode.
Enter enable mode by typing the enable command. The prompt will have a # to indicate this mode.

Enter config mode by typing the configure command. The prompt will have a (config)# to indicate
this mode.

There are a number of config submodes which will be indicated in the prompt as
(config-<submode>)#, and each submode allows configuration of a specific type of object in the
database.

Type exit to return to the previous mode, or type end to exit all config modes and return to enable
mode.

4.1.2. Navigation and help

There are a number of ways users can navigate the CLI and receive help at any time.
For navigation, the CLI implements a Linux/shell-style navigation - for example:

Ctrl-B - back one character

Ctrl-F - forward one character

Ctrl-A - move to the start of the line

Ctrl-E - move to the end of the line

Ctrl-P - display the previous command - can be repeated to go through history
Ctrl-R - search for text among previous commands

Refer to http://tiswww.case.edu/php/chet/readline/readline.html| for more information on all keyboard
shortcuts and facilities.

Help is also accessible by typing the command help. The output will vary based on the specific mode the
useris in.

Command completion at any point can be pressing tab once or twice. Pressing tab once will complete the
value if possible, and pressing tab twice will show all possible completions. Type the ? character to show
completions at any time.

The CLI will accept shortened versions of commands and options so long as there is no ambiguity in the
commands. For example, sh run will be interpreted as show running-config.

4.1.3. CLI conveniences: pipes, watching commands, and other tricks

The output of any CLI command can be piped to common Unix shell utilities such as grep, awk, wc,
tail, more, or less. This can make searching for data or browsing through output significantly easier.
For example, to find all the ports of a given switch, type:

http://tiswww.case.edu/php/chet/readline/readline.html

big switch
ks

networ 5

10.0.2.15> show port | grep :24
00:0a:00:24:a8:c4:69:00 52 28 00:24:a8:c4:69:cc
00:0a:00:24:a8:c4:69:00 54 30 00:24:a8:c4:69:ca
00:0a:00:24:a8:c4:69:00 56 32 00:24:a8:c4:69:c8
00:0a:00:24:a8:c4:69:00 57 33 00:24:a8:c4:69:c7
00:0a:00:24:a8:c4:69:00 58 34 00:24:a8:c4:69:c6
10.0.2.15>

The CLI provides begin, include, and exclude as pipe options that may be familiar to administrators
of existing network devices. begin is useful for starting to view large output at a particular point. For
example, to see just the 1sof output of show tech-support, type:

10.0.2.15> show tech-support | begin lsof |more

Executing os command: sudo lsof

COMMAND PID USER FD TYPE DEVICE
SIZE/OFF NODE NAME

init 1 root cwd DIR 8,16
4096 2/

init 1 root rtd DIR 8,16
4096 2/

init 1 root txt REG 8,16
125640 4081 /sbin/init

init 1 root mem REG 8,16
51712 19738 /lib/libnss_files-2.12.1.s0

init 1 root mem REG 8,16
43552 26679 /l1lib/libnss nis-2.12.1.so

init 1 root mem REG 8,16
97256 19579 /lib/libnsl-2.12.1.s0

The CLI also allows users to repeatedly invoke a command by prepending the command watch. For
example, watch show switch <dpid> flow will allow the user to monitor the flows on a specific
switch. This may be familiar to Unix users who use top or the corresponding watch command in Unix.

Multiple CLI commands can be entered into the CLI on a single line, separated by a semi-colon. For
example, to get all the way into a configuring a flow entry on a specific switch, type:

10.0.2.15> enable; conf; switch 00:0a:00:24:a8:c4:69:00;
flow-entry foo
10.0.2.15(config-flow-entry)#

Finally, the CLI allows redirecting the output of a command to a local file or to the URL of an HTTP server
or an FTP server. The local file is stored in the controller database (as general access to the local
filesystem is not given). This is convenient for storing away show output or versions of configurations. For
example, to store the output of show host, type:

big switch
netwo Ik s

V I s

10.0.2.15# show host > localhost://hostoutput
user data created

10.0.2.15# show config

Name Length Version Timestamp

hostoutput 1775 1 2010-12-15.08:29:31

10.0.2.15# show config hostoutput | head -10

MAC Address Name Switch ID Ingress Port IP
Address Vendor

00:0a:00:24:a8:c4:69:00 38 192.168.10.207 VMware, Inc.
00:21:£f7:de:e9%9:00 00:0c:00:21:f7:de:e9%9:00 local(65534)
192.168.12.102 ProCurve Networking by HP

00:25:90:08:94:d5 00:0a:00:21:f7:de:e9%9:00 2

128.8.109.145 Super Micro Computer, Inc.

00:30:48:f9:cc:£7 00:00:00:30:48:f9:cc:£f7 local(65534)
192.168.2.99 Supermicro Computer, Inc.

00:30:48:f9:cd:0b 00:00:00:30:48:f9:cd:0b local(65534)
0.0.0.0 Supermicro Computer, Inc.

00:30:48:£f9:cd:0d 00:00:00:00:00:00:00:01 17

192.168.11.2 Supermicro Computer, Inc.

00:50:8d:65:be:4b 00:00:00:00:00:00:00:01 22

192.168.11.1 ABIT COMPUTER CORPORATION

10:00:00:67:ad:07 00:00:00:30:48:£f9:cc:£7 4

192.168.12.132 unknown

4.1.4. Conventions

Text in courier font indicates either text that should be typed in by the user or output from a command.

Text enclosed in parentheses () indicates a set of required arguments. The options are separated by a
vertical bar |.

Text enclosed in square brackets [] indicates optional arguments. The options are separated by a
vertical bar |.

Text enclosed in angle brackets < > indicates a value that should be entered/substituted by the user.

4.2. Login mode commands

4.2.1. date

S v n t a x
date

Examples:

big switch

networls

192.168.2.129> date
2011-03-29 21:04:59
192.168.2.129>

Description
This command prints out the current date/time of the controller node. This is useful for interpreting log
output or timestamps in show commands.

4.2.2. debug

S v n t a x :
debug (bash | python | netconfig)

Examples:

10.0.2.15> debug bash

*x%*x* Warning: this is a debug command - use caution! ****x*
*x**x%x Type "exit" or Ctrl-D to return to the BigOS CLI *****

bsn@bigswitchcontroller:~$

Description:

This command gives access to a number of debug-level commands in the controller node. The bash and
python options run the respective Unix command shell that allows access to the internals of the
controller node. The netconfig reruns the first-time networking setup script. After running netconfig,
you should restart the controller.

This command should be used as advised by Big Switch Networks.

4.2.3. enable

S v n t a x
enable

Examples:

10.0.2.15> enable
10.0.2.15#

Description

This command puts the user into enable mode. This mode gives the user access to more commands and
capabilities, including copying configurations to be stored on the controller and changing the
configuration of the controller. The CLI prompt will change from a > to a # - see above example.

big switch

networls

Typically, network devices require a password to enter enable mode. In this release of the controller,
passwords are not supported.

4.2.4. exit

S v n t a x
exit

Examples:

10.0.2.15(config)# exit
10.0.2.15#

10.0.2.15# exit
10.0.2.15>

Description
This command leaves the current mode and returns the user to the previous mode. In the example above,
the user is first leaving config mode and then leaving enable mode.

4.2.5. help

S v n t a x
help [<topic>]

Examples:

big switch

networls

10.0.2.15(config-switch)# help
For help on specific commands type help <topic>
Available commands:

bundles

copy

date

debug

end

exit

help

history

logout

no

show

write

Available config objects:
flow-entry

Available fields for switch:
actions
active
alias
buffers
capabilities
connected-since
controller
dpid
ip-address
socket-address
tables

Description

This command lists the commands that are available in the current mode. The output will vary based on
the current mode. In the example above, the user is in config-switch submode, so there are three types of
commands that available: commands that can be executed directly (e.g., copy or show), objects that can

be created (e.g., flow-entry), or fields for the current submode that can be configured.

4.2.6. logout

S v n t a x
logout

Examples:

big switch

networls

10.0.2.15> logout

Ubuntu 10.10 bigswitchcontroller ttyl

bigswitchcontroller login:

Description
This command logs out the user from the CLI session and returns either to the shell where the user
connected from, or to the login prompt if at a console window.

4.2.7. show <keyword>

S vy n t a x

show (bundles | config | controller-node | flow-entry | host
interfaces | link | logging | port | running-config | startup-config |
switch | tech-support)

Examples:

10.0.2.15> show version

Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)

10.0.2.15> show switch hp-6600 desc

Switch Serial # Vendor Make

Model SW Version

------- D P B
CN9202M063 HP-Labs HP Procurve 5400z1/3500y1/6600 series

hp6600-101 2.02v

Description

This command takes a variety of options that will be covered in subsections below. Several options display
information about the system while other options display information about objects in the database
(controller-node, flow-entry, host, link, port, and switch).

4.2.7.1. show bundles

S vy n t a x
show bundles

Examples:

big switch
netwo k s

WY I s

192.168.2.129> sh bundles | grep beacon

Active 3 com.bigswitch.beacon.staticflowentry
Active 4 com.bigswitch.beacon.storage.cassandra
Active 5 com.bigswitch.beacon.storage.nosql
Active 13 net.beaconcontroller.core

Resolved 14 net.beaconcontroller.core.web

Active 15 net.beaconcontroller.devicemanager
Resolved 16 net.beaconcontroller.jetty.config
Active 17 net.beaconcontroller.learningswitch
Active 18 net.beaconcontroller.logging.bridge
Resolved 19 net.beaconcontroller.logging.config
Active 20 net.beaconcontroller.packet

Resolved 21 net.beaconcontroller.routing

Resolved 22 net.beaconcontroller.routing.dijkstra
Resolved 23 net.beaconcontroller.storage

Resolved 24 net.beaconcontroller.storage.memory
Active 25 net.beaconcontroller.topology

Resolved 26 net.beaconcontroller.topology.visualweb
Resolved 27 net.beaconcontroller.topology.web
Active 28 net.beaconcontroller.util

Active 29 net.beaconcontroller.web

Description

This command shows the underlying bundles that make up the Java Beacon process (see earlier
architecture discussion). This command is useful in conjunction with the bundles command that allows
starting and stopping of individual bundles, e.g., a deployment where flows are managed entirely via
static flow entries and the default routing application is not required

4.2.7.2. show config

S v n t a x
show config [all | <name> [all | <version number> | diff <ver a> <ver
b> 1]

Examples:

10.0.2.15# show config

Name Length Version Timestamp

----------- |mmmmmm | mmmmmm | e
startup 287 4 2010-12-14.21:29:26
mattspecial 254 1 2010-12-14.19:40:44

big switch

networls

10.0.2.15# show config startup all

Name Length Version Timestamp

——————— P L
startup 132 2 2010-12-13.22:11:04
startup 287 4 2010-12-14.21:29:26
startup 132 3 2010-12-14.04:32:09
startup 132 1 2010-12-13.22:09:43

10.0.2.15# show config startup 3
|

! Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)
!

.

switch 00:00:00:00:00:73:28:03
1

.

switch 00:0a:00:21:£f7:de:e9:00
]

switch 00:0a:00:24:a8:c4:69:00
10.0.2.15# show config startup diff 3 4
4a5,6

> switch 00:00:00:00:00:00:00:01

> 1

9al2,15

> flow-entry ssh-block

> active False

> dst-port 22

> actions drop

Description

This command shows configuration files that have been saved on the controller. A configuration file can
be a complete configuration (such as the special startup file) or a partial "configlet." The options allow
listing versions for a particular file, viewing a specific version of a file, or diff'ing two versions of a file.

4.2.7.3. show interfaces

S v n t a x
show interfaces

Examples:

big switch
ks

networ 5

192.168.2.229# show interfaces

eth0 Link encap:Ethernet HWaddr 52:54:00:25:e3:9b

inet addr:192.168.2.229 Bcast:192.168.2.255 Mask:255.255.255.0
inet6 addr: fe80::5054:ff:fe25:e39b/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:285120 errors:0 dropped:0 overruns:0 frame:0

TX packets:162749 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:44291880 (44.2 MB) TX bytes:27358754 (27.3 MB)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:2253128 errors:0 dropped:0 overruns:0 frame:0

TX packets:2253128 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:405056167 (405.0 MB) TX bytes:405056167 (405.0 MB)

Description
This command runs the Unix i fconfig command to show interface status.

4.2.7.4. show logging

S v n t a x
show logging (all | console-error | syslog | beacon | console-access)

Examples:

10.0.2.15# show logging syslog | grep UFW

[90655.094966] [UFW BLOCK] IN=ethO OUT=
MAC=52:54:00:25:e3:9b:c4:2c:03:37:c3:8d:08:00 SRC=192.168.2.23
DST=192.168.2.229 LEN=48 TO0S=0x00 PREC=0x00 TTL=64 ID=9384 DF
PROTO=TCP SPT=60385 DPT=8080 WINDOW=65535 RES=0x00 SYN URGP=0
[90671.112565] [UFW BLOCK] IN=eth0 OUT=
MAC=52:54:00:25:e3:9b:c4:2c:03:37:c3:8d:08:00 SRC=192.168.2.23
DST=192.168.2.229 LEN=48 TO0S=0x00 PREC=0x00 TTL=64 ID=39100 DF
PROTO=TCP SPT=60385 DPT=8080 WINDOW=65535 RES=0x00 SYN URGP=0

big switch
TR s

n et w oI 5

10.0.2.15# show logging beacon | grep DEBUG | grep Static | tail
-2

21:36:54.830 [Timer-68] DEBUG c.b.b.s.StaticFlowEntryPusher -
pushEntriesForSwitch OFSwitchImpl
[Socket[addr=/192.168.2.28,port=36307,localport=6633]
DPID[00:00:00:00:00:00:00:011]

21:37:04.815 [Timer-68] DEBUG c.b.b.s.StaticFlowEntryPusher -
pushEntriesForSwitch OFSwitchImpl
[Socket[addr=/192.168.2.29,port=41930, localport=6633]
DPID[00:00:00:00:00:73:28:031]]

Description

This command provides access to logging files for the controller, including general syslog as well as log
files for specific components of the controller. As shown in the examples, the output can be piped to
various shell utilities to make the output more manageable.

4.2.7.5. show running-config

S vy n t a x
show running-config

Examples:

10.0.2.15# show running-config

!

! Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)

switch 00:00:00:00:00:00:00:01

switch 00:00:00:00:00:73:28:03

.

switch 00:0a:00:21:£f7:de:e9:00
]

switch 00:0a:00:24:a8:c4:69:00
flow-entry ssh-block
active False
dst-port 22
actions drop

Description

This command shows the running configuration of the controller. In this release, this consists of the
current switches that are known to the controller and any static flow entries that have been configured
for each switch.

4.2.7.6. show startup-config

big switch

networls

S v n t a x
show startup-config

Examples:

10.0.2.15# show startup-config
1

! Big Switch Controller 0.1

(2011.03.28.1314-build.bigswitchcontroller.release)
|

switch 00:00:00:00:00:00:00:01
]

switch 00:00:00:00:00:73:28:03
1

switch 00:0a:00:21:f7:de:e9:00

Description
This command shows the startup configuration of the controller. The user should have issued a copy
running startup/write memory command or some other copy <src> startup command.

4.2.7.7. show tech-support

S v n t a x
show tech-support

Examples:

big switch
ks

networ 5

192.168.2.129> show tech-support |more

Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)
Current date/time: 2011-03-29.21:17:56

controller-node
IP Address Port Active Start Time

127.0.0.1 6633 True 2011-03-28 15:24:49.533000

host

MAC Address Name Switch ID Ingress Port IP Address
Vendor Last new flow from the host
mmmmmmmoeo P | =mmm o me | =mmm e |-
blah netgear-2 2 (2) 192.168.10.239 VMware, Inc.
2011-03-29 20:35:02

00:0c:29:74:64:47 netgear-2 2 (2) 192.168.10.200
VMware, Inc. 2011-03-28 19:55:35

00:0c:29:8d:71:a9 netgear-2 23 (23) 192.168.10.223
VMware, Inc. 2011-03-29 20:36:03

00:0c:29:ad:6f:43 netgear-2 2 (2) 192.168.10.239
VMware, Inc. 2011-03-28 21:59:34

Description
This command dumps information that is useful for debugging the controller operations. This includes
contents of the database, process/system information, command history, and log files.

4.2.7.8. show version

S v n t a x
show version

Examples:

192.168.2.129> show version
Big Switch Controller 0.1
(2011.03.28.1314-build.bigswitchcontroller.release)

Description
This command shows the specific software version installed on this controller node.

big switch
networks

4.2.8. show <database object>

4.2.8.1. show controller-node

S v n t a x
show controller-node [<controller-node id>] [stats [<stats options>]]

Examples:

10.0.2.15# show controller-node
IP Address Port Active Start Time

127.0.0.1 6633 True 2011-02-01 00:04:49.330000

Description

This command shows information about the current controller node that the CLI is connected to. In this
release, the controller node will just be the local machine and will always show 127.0.0.1. In later
releases, this will show the multiple controller nodes that comprise the overall controller system.

If the stats option is specified, you will be able to see a number of statistics gathered on the status of
the system hosting the controller. See the section on show <object> <id> stats to learn more
about the options here.

4.2.8.2. show flow-entry

S v n t a x
show flow-entry [<name>]

Examples:

10.0.2.15> show flow-entry

Switch DPID Name Active Idle Timeout Hard Timeout
Cookie Priority Wildcards Ingress Port Src MAC Dst MAC Ether Type
VLAN ID VLAN Priority Src IP Dst IP Protocol TOS Bits Src Port Dst
Port Actions

ssh-block False 60 0 0 32768 0
* *
22 drop

Description

This command shows all user-defined, static flow entries in the database. The command show switch
<dpid> flow shows all flow entries currently on a given switch, including static flow entries that have
configured with active set to True.

4.2.8.3. show host

big switch

S v n t

a X

show host [<mac address> |

Examples:

bigswitchcontroller> sh host
MAC Address

Name Vendor
Switch/OF Port (Physical Port)

multiple (3)
Supermicro Computer,

Supermicro Computer,

Inc.

Inc.

IP Address(es)

00:0a:00:21:f7:de:e9:00/4

Unknown

Unknown

ABIT COMPUTER CORPORATION 10.0.0.9

DELL INC.

(4)

00:30:48:f9:cc:£7

multiple (2)

00:30:48:f9:cc:£8
00:00:00:00:00:73:52:02/31 (31)
00:50:8d:65:be:4b
00:00:00:00:00:32:90:01/16 (16)
10:00:00:67:ad:07 unknown
multiple (2)

10:00:00:6f:ca:67 unknown
multiple (2)

10:9a:dd:4b:c4:dd Apple Inc
00:00:00:00:00:73:52:01/28 (28)
10:9a:dd:4b:e5:cb Apple Inc
00:00:00:00:00:73:52:01/23 (23)
10:9a:dd:52:39:d5 Apple Inc
00:00:00:00:00:73:52:01/2 (2)
58:b0:35:£5:£2:8f Apple, Inc
00:00:00:00:00:73:52:01/19 (19)
c0:3f:0e:75:83:65 NETGEAR
00:0a:00:24:a8:¢c4:69:00/25 (25)
c4:2c:03:02:5a:11 Apple
00:00:00:00:00:73:52:01/23 (23)
c4:2c:03:37:¢c3:8d Apple
00:00:00:00:00:73:52:01/23 (23)
c8:2a:14:05:de:ac unknown
00:00:00:00:00:73:52:01/23 (23)

Description
This command shows host information that has been discovered by the Device Manager application. In
addition to the MAC address, the specific switch and port where this host was learned is displayed.

192.168.12.132
192.168.12.131
192.168.10.249
192.168.10.243
192.168.10.237
multiple (2)
Unknown
192.168.10.238
192.168.10.216

192.168.10.246

If a host was learned in multiple places or has multiple IP addresses the word 'multiple' along with how
many places it was learned or how many IPs it has is shown. If no IP address is known for a host
'Unknown' is displayed instead.

Note that the ingress port is the logical OpenFlow port and the name of the port is in parentheses.

big switch
ks

networ 5

Name can be written in by the user for convenience in identifying particular hosts.

4.2.8.4. show link

S v n t a x
show link [<link-id>]

Examples:

192.168.2.129> show link
Src Switch DPID Src Port Src Port State Dst Switch DPID Dst Port
Dst Port State

5 listen(0x0) netgear-2 33 link-down (0x1)
netgear-2 33 listen(0x0) netgear-1 5
listen(0x0)

netgear-2 9 listen(0x0) hp-6600 43
listen(0x0)

wireless-ap-2 3 listen(0x0) hp-6600 62
listen(0x0)

vswitch 1 listen(0x0) hp-6600 67
listen(0x0)

hp-5400 5 forward(0x200) hp-6600 29

listen(0x0)

Description

This command shows link information that has been discovered by the Topology application. Links are
added from the perspective of a given switch based on LLDP packets, so two link rows will exist for a
single "logical" point-2-point link between two switches.

A link id is the concatenation of the source switch DPID/port and destination switch DPID/port, joined by
the - character. In the example above, the id for the first Iline is
00:00:00:00:00:00:00:01-2-00:00:00:00:00:00:00:02-2

4.2.8.5. show port

S v n t a x
show port [<port-id>]

Examples:

big switch

10.0.2.15> show port
Switch DPID OF # Name MAC Address
Configuration State Current Advertised Supported Peer

10 10 00:26:el:cb:db:0a 0x1
00:00:00:00:00:00:00:01 11 11 00:26:el:cd:5d:0b
0x1

00:00:00:00:00:00:00:01 12 12 00:26:el:fe:72:0c
0x1

00:00:00:00:00:00:00:01 13 13 00:26:el:b5:02:0d
0x1

00:00:00:00:00:00:00:01 14 14 00:26:el:6a:4c:0e
0x1

00:00:00:00:00:00:00:01 15 15 00:26:el:db:52:0f
0x1

Description

This command shows port information that has been discovered by the controller. Both the logical
OpenFlow port number and the name of the interface (often the externally visible physical port number
on a switch) are given.

<port-id> is the concatenation of the switch DPID and the logical OpenFlow port number joined by a :
. In the example above, the id for the first portis 00:00:00:00:00:00:00:01:1.

4.2.8.6. show switch

S v n t a x

show switch [realtime | <dpid> | all | <alias>] [aggregate | desc |
flow [brief | details] | host | port | table | features]]

Examples:

192.168.2.129> show switch
Switch DPID Alias Active Last Connect Time
IP Address Socket Address Max Packets Max Tables

pronto-3290 False 2011-03-28 15:24:52 192.168.2.31

/192.168.2.31:33083 256 3

00:00:00:00:00:37:80:01 pronto-3780 True 2011-03-28 15:24:51
192.168.2.32 /192.168.2.32:47260 256 3
00:00:00:00:00:73:28:02 netgear-1 True 2011-03-28 15:24:52
192.168.2.28 /192.168.2.28:40924 256 3
00:00:00:00:00:73:52:01 netgear-2 True 2011-03-28 15:24:51
192.168.2.52 /192.168.2.52:57690 256 3
00:00:00:00:00:d0:d0:03 wireless-ap-1 True 2011-03-28 15:24:56
192.168.2.34 /192.168.2.34:57244 256 2

00:00:00:00:00:d0:d0:05 wireless-ap-2 True 2011-03-28 15:24:56
192.168.2.35 /192.168.2.35:54597 256 2

big switch

10.0.2.15> show switch realtime
Switch DPID
00:00:00:30:48:£f9:cd:0b
00:0a:00:21:f7:de:e9:00
00:00:00:30:48:£f9:cc:£7
00:0a:00:24:a8:c4:69:00
00:00:00:00:00:00:00:01

192.168.2.129> show switch 00:0a:00:24:a8:¢c4:69:00 desc

Switch Serial # Vendor Make

Model SW Version

——————— D o B
CN9202M063 HP-Labs HP Procurve 5400z1/3500y1/6600 series

hp6600-101 2.02v

192.168.2.129> show switch 00:0a:00:24:a8:¢c4:69:00 features

Switch OF Port # Name HW Mac Address Config State

Current Advertised Supported

Peer

------- D] e S e
25 (1) 1 00:24:a8:c4:69:e7 0x0 forward(0x200)

lgb-fd, autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 29 (5) 5 00:24:a8:c4:69:e3 0x0 forward (0x200)
lgb-£fd, autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 30 (6) 6 00:24:a8:c4:69:e2 0x0 block(0x300)
lgb-£fd,autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 43 (19) 19 00:24:a8:c4:69:d5 0x0 forward (0x200)
lgb-fd, autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 62 (38) 38 00:24:a8:c4:69:c2 0x0 forward(0x200)
lgb-fd, autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 64 (40) 40 00:24:a8:c4:69:c0 0x0 forward(0x200)
100mb-£fd, autoneg(0x208) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-£fd,autoneg(0x22f) 0x0
hp-6600 67 (43) 43 00:24:a8:c4:69:bd 0x0 forward (0x200)
lgb-£fd,autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 68 (44) 44 00:24:a8:c4:69:bc 0x0 forward(0x200)
lgb-fd, autoneg(0x220) 0x0

10mb-hd, 10mb-£fd, 100mb-hd, 100mb-£fd, 1gb-fd, autoneg(0x22f) 0x0
hp-6600 local(65534) local 00:24:a8:c4:69:00 0x0 listen(0x0)
0x0 0x0 0x0

0x0

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 host

big switch

Switch MAC Address VLAN Switch Port
——————— B ol Dl RS
hp-6600 c4:2¢c:03:02:5a:11:L 10 43
hp-6600 00:c2:92:45:2d:7L 10 43
hp-6600 01:14:3d:87:a6:2L 10 29
hp-6600 10:9a:dd:52:39:d5:L 10 43
hp-6600 10:9a:dd:4b:c4:dd:L 10 43
hp-6600 02:54:bc:d0:89:0L 10 43

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 port

Switch OF Port # Rcv Bytes Rcv Pkts Rcv Errs Rcv Dropped Rcv
CRC Rcv Overruns Rcv Frame Errs Xmit Bytes Xmit Pkts Xmit Errs
Xmit Dropped Collisions

25 (1) 3297786525 20532074 0 n/a n/a
n/a 4014392970 22421628 O 0 n/a
hp-6600 29 (5) 44898224795 55976242 0 n/a
n/a n/a 13607647730 55432025 O 0

n/a

hp-6600 30 (6) 23048783577 34488214 0 n/a
n/a n/a 3005116197 16835159 O 0

n/a

hp-6600 43 (19) 9997933560 42702605 0 n/a
n/a n/a 50611767271 57349665 0 0

n/a

hp-6600 62 (38) 12593367 196630 0 n/a
n/a n/a 578185690 5711527 0 0

n/a

hp-6600 64 (40) 13247627 40730 0 n/a
n/a n/a 611940635 5753084 0 0

n/a

hp-6600 67 (43) 967734799 2660588 0 n/a
n/a n/a 4406391087 9026356 0 0

n/a

hp-6600 68 (44) 2556554522 7647534 0 n/a
n/a n/a 10349780825 14700074 O 0

n/a

hp-6600 local(65534) n/a n/a n/a n/a
n/a n/a n/a n/a n/a n/a
n/a

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 table
Switch Name Table ID Wildcards Maximum Entries # Lookups #
Matched # Active

HW TCAM 0 532707 1500 0 0

16

hp-6600 hash 1 0 65536 6078274
606977 0

hp-6600 classifier 2 4194303 65536 0 0

20

big switch

192.168.2.129> show switch 00:0a:00:24:a8:c4:69:00 flow
Switch Bytes Packets Dur(s) Cookie In Port Src MAC
MAC Ether Type Src IP Dst IP

Src Port Dst Port

Dst
Protocol

70 1 2 lswitch 29 (5) 00:11:43:d8:7a:62
c4:2c:03:02:5a:11 ip(2048) 205.234.25.153 192.168.10.237 *

* *

hp-6600 0 1 0 lswitch 43 (19) c4:2c:03:02:5a:11
00:11:43:d8:7a:62 ip(2048) 192.168.10.237 74.125.224.85 *

* *

hp-6600 78 273364 8688 lswitch 29 (5) 00:11:43:d8:7a:62
10:9a:dd:4b:c4:dd ip(2048) 192.168.2.152 192.168.10.248 *

* *

hp-6600 125 22 1 lswitch 43 (19) c4:2c:03:02:5a:11
00:11:43:d8:7a:62 ip(2048) 192.168.10.237 74.125.47.109 *

* *

hp-6600 0 51 9 lswitch 43 (19) 10:9a:dd:52:39:d5
00:11:43:d8:7a:62 ip(2048) 192.168.10.236 208.85.146.99 =

* *

hp-6600 0 0 2 lswitch 29 (5) 00:11:43:d8:7a:62
c4:2c:03:02:5a:11 ip(2048) 74.125.224.80 192.168.10.237 *

* *

hp-6600 72 1 2 lswitch 43 (19) c4:2c:03:02:5a:11
00:11:43:d8:7a:62 ip(2048) 192.168.10.237 74.125.224.80 *

* *

hp-6600 0 0 0 lswitch 67 (43) 10:00:00:67:ad:07
00:11:43:d8:7a:62 ip(2048) 192.168.12.132 192.168.2.150 *

* *

hp-6600 329 4088 683 lswitch 43 (19) c4:2c:03:37:c3:8d
00:11:43:d8:7a:62 ip(2048) 192.168.10.215 208.85.146.99 *

* *

hp-6600 0 0 2 lswitch 43 (19) c4:2c:03:37:c3:8d
00:11:43:d8:7a:62 ip(2048) 192.168.10.215 98.136.48.116 *

* *

hp-6600 66 40 9 lswitch 29 (5) 00:11:43:d8:7a:62
10:9a:dd:52:39:d5 ip(2048) 208.85.146.99 192.168.10.236 *

* *

hp-6600 64 1 3 lswitch 29 (5) 00:11:43:d8:7a:62
c4:2c:03:02:5a:11 ip(2048) 118.169.32.181 192.168.10.237 *

* *

hp-6600 0 19531 19539 1switch 43 (19) c4:2c:03:37:¢c3:8d
00:11:43:d8:7a:62 ip(2048) 192.168.10.215 192.168.10.1 *

* *

hp-6600 0 0 3 lswitch 43 (19) c4:2c:03:02:5a:11
00:11:43:d8:7a:62 ip(2048) 192.168.10.237 118.169.32.181 *

* *

hp-6600 772 32447 19539 1lswitch 29 (5) 00:11:43:d8:7a:62
c4:2c:03:37:¢c3:8d ip(2048) 192.168.10.1 192.168.10.215 *

* *

big switch
networks

hp-6600 0 0 1
c4:2c:03:02:5a:11 ip(2048)
* *

hp-6600 70 116930 8688
00:11:43:d8:7a:62 ip(2048)
* *

hp-6600 149 1 1
00:11:43:d8:7a:62 ip(2048)
* *

hp-6600 160 1 0
10:00:00:67:ad:07 ip(2048)
* *

hp-6600 70 1 2
c4:2c:03:37:c3:8d ip(2048)
* *

hp-6600 0 21 1
c4:2c:03:02:5a:11 ip(2048)
* *

hp-6600 384 1 0
c4:2c:03:02:5a:11 ip(2048)
* *

hp-6600 66 3289 683
c4:2c:03:37:c3:8d ip(2048)
* *

hp-6600 0 1 2
00:11:43:d8:7a:62 ip(2048)
* *

hp-6600 0 0 2
c4:2c:03:37:c3:8d ip(2048)
* *

hp-6600 72 1 2

00:11:43:d8:7a:62

ip(2048)

lswitch 29 (5)
95.88.104.171

00:11:43:d8:7a:62
192.168.10.237 *

lswitch 43 (19) 10:9a:dd:4b:c4:dd
192.168.10.248 192.168.2.152 *

lswitch 43 (19) c4:2c:03:02:5a:11
192.168.10.237 95.88.104.171 *

lswitch 29 (5)
192.168.2.150

lswitch 29 (5)
98.136.48.116

lswitch 29 (5)
74.125.47.109

lswitch 29 (5)
74.125.224.85

lswitch 29 (5)
208.85.146.99

00:11:43:d8:7a:62
192.168.12.132 *

00:11:43:d8:7a:62
192.168.10.215 *

00:11:43:d8:7a:62
192.168.10.237 *

00:11:43:d8:7a:62
192.168.10.237 *

00:11:43:d8:7a:62
192.168.10.215 *

lswitch 43 (19) c4:2c:03:02:5a:11
192.168.10.237 205.234.25.153 *

lswitch 29 (5)
192.168.2.1

00:11:43:d8:7a:62
192.168.10.215 *

lswitch 43 (19) c4:2c:03:37:c3:8d
192.168.10.215 192.168.2.1 *

big switch
ks

networ

5

Use

of all as an argument to show switch:

192.168.2.129> sh switch netgear-1 table
Switch Name Table ID Wildcards Maximum Entries #
Lookups # Matched # Active

BCM FlowDriver 0 4194303 512 17264224 49895
0

netgear-1 hash2 1 0 131072 0

0 0

netgear-1 linear 2 4194303 100 0

0 0

Use of alias as an argument to show switch:

192.168.2.129> sh switch netgear-1 table
Switch Name Table ID Wildcards Maximum Entries #
Lookups # Matched # Active

BCM FlowDriver 0 4194303 512 17264224 49895
0

netgear-1 hash2 1 0 131072 0

0 0

netgear-1 linear 2 4194303 100 0

0 0

Description
This command shows both switch information currently in the database as well as real-time information
directly collected from the switch. For convenience, the "all" keyword can be given to retrieve
information from all the switches at once. Switch aliases can also be given instead of giving the full 8-byte
DPIDs.

show switch and {{show switch < dpid | alias >} }} will show switches in the database, including those
that are no longer connected to the controller.

show switch realtime shows a list of the switches that are currently connected to the controller.

{{show switch < dpid | alias | all > host }} shows a list of hosts and their ports and VLAN IDs for a given
switch.

show switch aggregate, desc, features, flow, port, and table correspond to the
OpenFlow statistics that a switch can collect and present.

big switch
networks

® aggregate shows the total flows, bytes, and packets that this switch has seen from an
OpenFlow perspective
desc shows the configured serial #, vendor, make, model, and software version
features shows the port features when the switch initially connected to the controller.
flow shows the flow entries that are currently active on this switch. The details and brief
options show more or less information per flow entry - in particular, details will show the actions
for a flow-entry. Wildcarded match fields are shown with a *, and the cookie field shows the
source of the flow mod (either static for statically configured, 1switch for Learning Switch
application, or routing for the Routing application).
port shows the real-time counters (received/transmitted bytes/packets/errors, collisions...)
table shows counters for each table on the switch (see the OpenFlow spec or the appropriate
switch manual for more details on this).

4.2.8.7. show <object> <id> stats

S v n t a x
show (switch | controller-node) <object id> stats [<stat-name> [display

(graph | table | latest-value)] [duration <interval>] [start-time
<time>] [end-time <time>] [sample-count <count>] [sample-interval
<integer milliseconds>] [sample-window <integer milliseconds>]

[data-format (rate | value)]]

E x amopl e s
View most recent values for statistics on the specified controller node:

bigswitchcontroller> show controller-node 192.168.2.129:6633 stats

CPU User : 3 %

CPU Nice : 0%

CPU System : 0 %
Memory Used : 906092 kB
Swap Used : 98832 kB
/ Used : 13 %

/log Used : 21 %

/sysboot Used : 2
Beacon CPU
Database CPU

o O B O
o0 00 o o0 od° o°

Apache CPU

Cli cpU

Statd CPU :

Memory Free : 118884 kB
CPU Idle : 95 %

Show most recent values for statistics on the specified switch:

bigswitchcontroller> show switch 00:0a:00:21:£7:de:e9:00 stats
OF Packet In : 21590 Packets

OF Flow Mod : 41584 Flow Mods

OF Active Flow : 20 Flows

big switch

networlkhks

Show the most recent value for a specific statistic

bigswitchcontroller> show controller-node 192.168.2.129:6633 stats
cpu-user
CPU User t 2 %

Display a graph of the CPU system stat for the last hour on the controller node (some load has been
artificially generated):

roba-controller> show controller-node 192.168.2.129:6633 stats
cpu-system display graph
CPU System (%)

100

96 |

92|

88|

84|

80 |

76|

72|

68|

64 |

60|

56 |

52|

48|

44|

40|

36|

32

28|

24|

20|

16|

12|
###

8| ##

###

HH HH oW W

O | #HHHBHHHAHRHAAAHRAAA HHARHHRHHAHAH A
712:30 "12:35 "12:41 "12:46 "12:52 "12:57 ~13:02 "13:08 "13:13
~13:19 13:29"

~05/26
05/26"

Time

Display a graph of the CPU user stat for the last 30 minutes on the controller node (some load has been
artificially generated):

——

big switch

LW O | |(_ s

roba-controller> show controller-node 172.16.195.129:6633 stats
cpu-user display graph duration 20m
CPU User (%)

lool L0 L L L) 1))))])))) L)))) L))))]

L [

96 LL L L AL) 1L L AL) 1 1L L A) 1 1L L AL 1 L A 1
L 7 1 1

92 LU L ff L L L L AL L L L L AL) L L L) L))
LA 7 A U

88 | #HAHHHAHHHHRHARHHARHAHRAARHAH

84 LU L ff L L L L AL L L AL) L L) L)))
L 1 1 A U

80 | #HAABHHHHHHHRHABHHARHABRHARHAH

7 6 LU L Af L L L L L) L L AL) 1L) L) L L L A)
L 1 1 A U

72 LL L L AL L L L AL 1 L L AL 1L L 4L AL) 1L 4L) 4L AL
L (A (A

68 LL L L L) 1L L L) 1 1L L AL 1 1L L AL 1 L A
L 7 7 1

L 1 (A A A

6 0 | #HABHHABHHBRHABHHARHABRHARHAH

56| LL L ff L L L L AL L L L AL) L L L) L))

64| 2L L ff L L L L L AL L L AL) L L L) L L L)

LA 7 A A U

52 | ##HABHHHRHABHABRHIABHAARAABHAH

4 8 LU L ff L AL L) 1 1 AL) 1L L)))
L 7 1 A A U

44 LL L L AL AL L L AL) 1 L L AL A 1L L AL AL) 1 L AL) L 4L A
L 7 1 1 1

4 0 LL L L)L 1L L)) 1 L) 1 L L AL 1 L
L 7 1 A U

36 1L L L AL AL L L AL) L gL AL 1L L AL AL 1L L 4L) L gL) L]
L 1

32 LL L L L) L L AL) 1 1L L AL 1 L L 1L L L 1 L)
L 7 7 1 1 U

LA 7 1 1

24 | #HHHBHHHRHABHHARHAARAABHAARAAH

20|u///luuu////uuuu///luuuu//uuuu/////luuuu # #

28| 2L L ff A L L L L L L L L L L L L L L)

L 1

#

16| LU L ff L L L L L) L))) 1L))) L) L)

L 1 1 1 U

TR NN IRIN NN T NINN NNI)
L (i

12 1Ll L L) 1L L AL) 1 1L L AL 1 L) L 1 L L L L L)
L 7 1 1

LL L pL L L L) L L)
L

8 | #AHABHHARHABHHARHHARHABHAARHAH

LU L L)L L L L) L)
L

o LL L L AL L L L L) L L L) 1L L) L L) AL)) L) L L) L) 1 L) 1 L)) 1
LZ {1

713:12 "13:14 ~13:15 "13:17 ~13:19 "13:21 "13:23 "13:24 "13:26
~13:28 13:31"

~05/26
05/26"

Time

Display 5 minutes of the CPU user statistic for the controller starting at 1:24 PM today in a table format.
Note that not all stored data is displayed necessarily in the table format because it will be down-sampled.
You can control the downsampling using the sample-count and sample-window parameters:

big switch

roba-controller> show controller-node 172.16.195.129:6633 stats
cpu-user display graph start-time 13:24 duration 5m display table
CPU User (%) Timestamp

2 Thu May 26 13:24:07 2011
0 Thu May 26 13:24:17 2011
0 Thu May 26 13:24:27 2011
2 Thu May 26 13:24:37 2011
0 Thu May 26 13:24:47 2011
0 Thu May 26 13:24:57 2011
3 Thu May 26 13:25:07 2011
0 Thu May 26 13:25:17 2011
0 Thu May 26 13:25:27 2011
2 Thu May 26 13:25:37 2011
0 Thu May 26 13:25:47 2011
0 Thu May 26 13:25:57 2011
2 Thu May 26 13:26:07 2011
0 Thu May 26 13:26:17 2011
1 Thu May 26 13:26:27 2011
2 Thu May 26 13:26:37 2011
7 Thu May 26 13:26:47 2011
17 Thu May 26 13:26:57 2011
19 Thu May 26 13:27:07 2011
17 Thu May 26 13:27:17 2011
16 Thu May 26 13:27:27 2011
18 Thu May 26 13:27:37 2011
16 Thu May 26 13:27:47 2011
16 Thu May 26 13:27:57 2011
19 Thu May 26 13:28:07 2011
17 Thu May 26 13:28:17 2011
16 Thu May 26 13:28:27 2011
19 Thu May 26 13:28:37 2011
16 Thu May 26 13:28:47 2011
17 Thu May 26 13:28:57 2011

Description

Some objects support displaying statistics about that object, including seeing how these change over
time. Currently, you can request statistics for the controller-node and switch objects. For the
controller node, the following statistics are available:

cpu-user - Total CPU user percentage

cpu-nice - Total CPU nice percentage

cpu-system - Total CPU system percentage

cpu-idle - Total CPU idle percentage

mem-used - Total memory used in kilobytes

mem-free - Memory free in kilobytes

swap-used - Swap space used in kilobytes

disk-root - Percentage of the root partition disk space used
disk-log - Percentage of the log partition disk space used

big switch

disk-boot - Percentage of the boot partition disk space used
beacon-cpu - CPU usage for the controller processes
database-cpu - CPU usage for the local database processes
apache-cpu - CPU usage for the web server processes

cli-cpu - CPU usage for the command-line interface processes
statd-cpu - CPU usage for the stats gathering daemon processes

For switches, the following statistics are available:

® OFActiveFlow - Number of active flows
® OFFlowMod - Number of flow mods processed
® OFPacketIn - Number of openflow packets processed

The following arguments are accepted in any order:

® display - graph | table | latest-value - Default is latest-value unless a time
range is specified, in which case it will default to graph. latest-value will display the most
recent value for that statistic. graph will display the time series data on an ascii graph. table
will display the time series data in tabular form.

® duration - <integer>weeks | <integer>days | <integer>hours |
<integer>mins | <integer>secs | <integer>ms - Select the length of the time
interval to display. If start-time is specified this will be starting from the start time. If
end-time is specified it will be ending at the end time. If neither is specified it will be ending at
the current time.

® start-time - "YYYY-MM-DD HH:MM:SS" | YYYY-MM-DDTHH:MM:SS | "YYYY-MM-DD
HH:MM:SS+TTT" | YYYY-MM-DDTHH:MM:SS+TTT | YYYY-MM-DD | MM-DD HH:MM
| now - Specify the start time for the time series in one of the indicated formats

® end-time - "YYYY-MM-DD HH:MM:SS" | YYYY-MM-DDTHH:MM:SS | "YYYY-MM-DD
HH:MM:SS+TTT" | YYYY-MM-DDTHH:MM:SS+TTT | YYYY-MM-DD | MM-DD HH:MM

| now - Specify the start time for the time series in one of the indicated formats

® sample-count - count - An integer number of samples to target to return. Note that it's possible
more or less samples could be returned.

® sample-interval - <integer>weeks | <integer>days | <integer>hours |
<integer>mins | <integer>secs | <integer>ms - A number of milliseconds as the
interval between samples

® sample-window - <integer>weeks | <integer>days | <integer>hours |
<integer>mins | <integer>secs | <integer>ms - Average all the samples in the
neighborhood of each sample and return the average value. The window is specified as an integer
number of milliseconds.

4.2.9. trace
S v n t a x

trace [detail |oneline] [echo _reply | echo request | features rep |
flow mod | flow removed | get _config rep | hello | packet_in |
packet out | port status | set config | stats_reply | stats_request]*
show switch <dpid | alias> trace [detail |oneline] [echo_reply |
echo request | features rep | flow mod | flow removed | get config rep
| hello | packet_in | packet out | port status | set config |

stats_reply | stats request]*

big switch

Examples:

bigswitchcontroller> trace

Starting openflow trace, use "C to quit

11:39:51.570389 flow mod
192.168.2.101:42390]
11:39:51.570951 flow_mod
192.168.2.102:45682]
11:39:51.570967 flow _mod
192.168.2.31:45636]
11:39:51.571071 flow_mod
192.168.2.32:44175]
11:39:51.571084 flow_mod
192.168.2.36:53820]
11:39:51.609319 port_status
192.168.2.129:6633]
11:39:51.872062 port_status
192.168.2.129:6633]
11:39:52.017197 flow_removed
192.168.2.129:6633]
11:39:52.017251 flow removed
192.168.2.129:6633]
11:39:52.018221 flow_mod
192.168.2.102:45682]
11:39:52.026433 flow removed
192.168.2.129:6633]
11:39:52.026459 flow_removed
192.168.2.129:6633]
11:39:52.027282 flow_mod
192.168.2.101:42390]
11:39:52.100353 packet in
192.168.2.129:6633]
11:39:52.101537 packet out
192.168.2.102:45682]
11:39:52.103353 packet_in
192.168.2.129:6633]
11:39:52.103564 packet_out
192.168.2.101:42390]
11:39:52.107072 packet in
192.168.2.129:6633]
11:39:52.107360 packet out
192.168.2.34:36938]
11:39:52.130533 port_status
192.168.2.129:6633]
11:39:52.178312 packet out
192.168.2.101:42390]
11:39:52.181437 packet out
192.168.2.102:45682]
11:39:52.191252 packet out

[

[

[

[

[

[

[

[

192.168.2.129:6633

192.168.2.129:6633

192.168.2.129:6633

192.168.2.129:6633

192.168.2.129:6633

192.168.2.53:37396

192.168.2.53:37396

192.168.2.102:45682

192.168.2.102:45682

192.168.2.129:6633

192.168.2.101:42390

192.168.2.101:42390

192.168.2.129:6633

192.168.2.102:45682

192.168.2.129:6633

192.168.2.101:42390

192.168.2.129:6633

192.168.2.34:36938

192.168.2.129:6633

192.168.2.53:37396

192.168.2.129:6633

192.168.2.129:6633

192.168.2.129:6633

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

big switch
networks

192.168.2.31:45636]

11:39:52.201603 packet out [192.168.2.129:6633
192.168.2.32:44175]
11:39:52.208931 packet out [192.168.2.129:6633

192.168.2.36:53820]
“Cbigswitchcontroller>

bigswitchcontroller> trace detail flow_ mod
Starting openflow trace, use "C to quit

11:40:11.890486 flow mod [192.168.2.129:6633
192.168.2.102:45682]
arp

in_port=*

dl_vlan=0x000a

dl_vlan_ pcp=0x02

dl_src=10:9a:dd:4b:e5:cb

dl dst=00:11:43:d8:7a:62

nw_src=192.168.10.242

nw_dst=192.168.10.1

nw_tos=*

nw_proto=*

tp_src=*

tp_dst=*

DEL: cookie:4503599627370496 idle:5 hard:0 pri:100
buf:0xffffffff flg:0 actions=output:4

11:40:11.994601 flow mod [192.168.2.129:6633
192.168.2.32:44175]
arp

in_port=*

dl vlan=0xffff

dl_vlan_ pcp=0x00

dl src=00:11:43:d8:7a:62

dl dst=10:9a:dd:4b:e5:cb

nw_src=192.168.10.1

nw_dst=192.168.10.242

nw_tos=*

nw_proto=*

tp_src=*

tp_dst=*

DEL: cookie:4503599627370496 idle:5 hard:0 pri:100
buf:0xffffffff flg:0 actions=output:1l

11:40:11.997367 flow mod [192.168.2.129:6633
192.168.2.101:42390]

ip

in_port=43

dl_vlan=0x000a

dl_vlan_ pcp=0x02
dl_src=10:9a:dd:4b:c4:dd
dl dst=00:11:43:d8:7a:62
nw_src=192.168.10.248
nw_dst=192.168.10.1

->

->

->

->

big switch

nw_tos=*

nw_proto=*

tp_src=*

tp_dst=*

ADD: cookie:4503599627370496 idle:5 hard:0 pri:100
buf:0x9c8486 flg:0x1 actions=output:29
“Cbigswitchcontroller>

bigswitchcontroller> trace oneline packet_ in

Starting openflow trace, use "C to quit

11:50:22.819522 packet_in [192.168.2.102:45682 ->
192.168.2.129:6633], total len=205 in port=5 data_ len=205
buffer=0x00589eec, in_port=5, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl src=00:24:a8:c4:69:e3, dl dst=01:80:c2:00:00:0e,
dl_type=0x88cc, nw_src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp src=0, tp_dst=0

11:50:22.853040 packet_in [192.168.2.102:45682 —>
192.168.2.129:6633], total len=183 in_port=5 data_len=183
buffer=0x0058%eed, in port=5, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl_src=00:24:a8:c4:69:e3, dl_dst=01:80:c2:00:00:00,
dl_type=0x05ff, nw src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp src=0, tp_dst=0

11:50:22.853077 packet_in [192.168.2.102:45682 —>
192.168.2.129:6633], total len=183 in port=6 data_ len=183
buffer=0x0058%9eee, in_ port=6, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl src=00:24:a8:c4:69:e2, dl dst=01:80:c2:00:00:00,
dl_type=0x05ff, nw_src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp_src=0, tp_dst=0

11:50:22.857064 packet_in [192.168.2.34:36938 —>
192.168.2.129:6633], total len=183 in port=4 data len=183
buffer=0x002ce628, in port=4, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl_src=00:24:a8:c4:69:c0, dl_dst=01:80:c2:00:00:00,

dl type=0x05ff, nw src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp src=0, tp_dst=0

11:50:22.858939 packet_in [192.168.2.52:39124 ->
192.168.2.129:6633], total len=183 in_port=9 data_len=183
buffer=0x00af0b91, in port=9, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl _src=00:24:a8:c4:69:d5, dl_dst=01:80:c2:00:00:00,
dl_type=0x05ff, nw_src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp src=0, tp_dst=0

11:50:22.859429 packet_in [192.168.2.31:45636 ->
192.168.2.129:6633], total len=183 in port=22 data len=183
buffer=0x00085a8d, in_port=22, dl_vlan=0xffff, dl_vlan pcp=0x00,
dl src=00:24:a8:c4:69:d0, dl_dst=01:80:c2:00:00:00,
dl_type=0x05ff, nw_src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,
nw_proto=0, tp src=0, tp dst=0

11:50:22.976736 packet_in [192.168.2.101:42390 —>
192.168.2.129:6633], total len=183 in port=29 data_len=183
buffer=0x009c8bfl, in port=29, dl vlan=0xffff, dl_vlan pcp=0x00,
dl_src=00:21:f7:de:f9:fb, dl_dst=01:80:c2:00:00:00,
dl_type=0x05ff, nw src=0.0.0.0, nw dst=0.0.0.0, nw_tos=0x00,

big switch

networls

11:50:22.976765
192.168.2.129:6633
buffer=0x009c8cf2,

11:50:23.210654
192.168.2.129:6633
buffer=0x009c8bf3,

nw_proto=0, tp_src=

dl _src=00:21:£f7:de:
dl_type=0x05ff, nw_
nw_proto=0, tp_src=

dl_src=c0:3f:0e:75:
dl type=0x0069, nw_
nw_proto=0, tp_ src=

0, tp_dst=0
packet_in [192.168.2.101:42390 ->
], total len=183 in port=30 data_len=183
in port=30, dl_vlan=0xffff, dl_vlan pcp=0x00,
f9:fa, dl dst=01:80:c2:00:00:00,
src=0.0.0.0, nw_dst=0.0.0.0, nw_tos=0x00,
0, tp_dst=0
packet in [192.168.2.101:42390 ->
], total len=123 in port=25 data_len=123
in _port=25, dl_vlan=0x0001, dl_vlan pcp=0x02,
83:65, dl_dst=01:80:c2:00:00:00,
src=0.0.0.0, nw _dst=0.0.0.0, nw_tos=0x00,
0, tp_dst=0

big switch

3

“Cbigswitchcontroller>

Description

This command prints the trace of openflow messages being exchanged between the controller and the
switches. It can be executed in the login context (as 'trace [options]'), or the switch context (as'
switch show <dpid|alias> trace [options]'). In the login context, it displays messages
to/from all switches. And in the switch context, it displays the messages to/from that specific switch. The
trace is terminated by a AC on the terminal.

The default output format is a summary that identifies the type of message and the src/dest nodes. You
can view additional openflow message details using the options detail or oneline. detail lists
openflow message details in a multi-line format that is easier to use interactively, and oneline formats

the same content as one line which is easier to use with grep/other tools.

The output can be further filtered to specific type(s) of messages by specifying them on the commandline.

4.3. Enable mode commands

4.3.1. bundles

S v n t a x
bundles <bundle-id> (stop | start)

Examples:

10.0.2.15# show bundles | grep static

Active 3 com.bigswitch.beacon.staticflowentry
10.0.2.15# bundles 3 stop

10.0.2.15# show bundles | grep static

Resolved 3 com.bigswitch.beacon.staticflowentry
10.0.2.15# bundles 3 start

10.0.2.15# show bundles | grep static

Active 3 com.bigswitch.beacon.staticflowentry
10.0.2.15#

Description:
Warning: this command should only be run when instructed by Big Switch Networks.

This command allows the user to stop/start specific bundles in the Java Beacon process. Generally, all
bundles should be running, but there may be specific deployments where certain bundles (for example,
the routing application) may need to be disabled. Alternatively, there may be errors conditions where a
bundle needs to be manually restarted.

The bundle ids are shown in the show bundles command. The example above shows obtaining the
bundle id for a specific bundle using the show command, deactivating it and checking its status, and then

big switch
ks

networ 5

reactivating it.

4.3.2. configure

S v n t a x
configure

Examples:

10.0.2.15# configure
10.0.2.15(config)# help
For help on specific commands type help <topic>
Available commands:

bundles

connect

copy

date

debug

end

exit

help

history

logout

no

reload

show

write

Available config objects:
controller-node
host
link
port
switch

Description

This command puts the user into config mode where objects can be created, updated, and deleted. The
CLI prompt will change to (config)# (see example above). In this mode, commands are available to

create, update, and delete objects.

The controller-node, host, link, port, and switch objects are typically written in by the controller
applications such as Device Manager and Topology. The typical user-defined object are static flow entries.
Flow entries are not directly available in config mode but are in the config-switch submode (which is

entered when a switch object is being edited).

4.3.3. copy

S v n t a x
copy <src> <dst>

big switch
networks

where <src> and <dst> can be:
{{ (running-config | startup-config | localhost://<name> | url)}}
where <url> must start with either http: or ftp:.

Examples:

10.0.2.15# copy run startup
10.0.2.15# show config
Name Length Version Timestamp

——————————— e [
startup 287 5 2010-12-14.22:55:48
10.0.2.15# copy run startup

10.0.2.15# show config

Name Length Version Timestamp

startup 287 6 2010-12-14.22:56:00

10.0.2.15# show config

Name Length Version Timestamp

——————————— D
startup 287 6 2010-12-14.22:56:00
sampleblock 90 1 2010-12-14.23:07:31

10.0.2.15# show config sampleblock
switch 00:0a:00:24:a8:c4:69:00
flow-entry ssh-block
active False
dst-port 22
10.0.2.15# copy localhost://sampleblock running
Num lines applied: 4

Description
This command copies configuration files from/to various files, including the running-config, the
startup-config, local files and URLs for http or ftp servers.

Common examples include:

® copy running-config startup-config: copies the current running configuration to the
startup configuration.

® copy localhost://<name> running-config: applies a stored config file to the running
configuration. The stored config file can be a "configlet": a partial config file.

® copy running-config localhost://<name>: copies the current running configuration
to a named file - useful for "checkpointing" the running config without writing it to startup.

43.4.write
S v n t a x

big switch

networls

write (memory | terminal)

Examples:

10.0.2.15# write mem

10.0.2.15# write t
]

.

! Big Switch Controller 0.1

(2011.03.28.1314-build.bigswitchcontroller.release)
|

switch 00:00:00:00:00:00:00:01
1

switch 00:00:00:00:00:73:28:03

Description

write memory is an alias for copy running-config startup-config and write
terminal is an alias for show running-config

4.4. Config mode commands

44.1. cloud

S v n t a x
cloud connect [auth-token <auth-token-value>] [cluster <cluster-id>]

[sync-period <period-in-secs>]
cloud disconnect
c 1l oud r e s e t

cloud status

Examples

10.0.2.15(config)# cloud connect auth-token 3X4E-XYF9-EKX3-GFP7
cluster acme:engineering

Successfully configured controller node for cloud access
10.0.2.15(config)# cloud status

Syncing to the cloud has been configured and is enabled.

Sync Period: 300
Target Cluster: acme:engineering
Cloud Server: update.bigswitch.com

10.0.2.15(config)# cloud disconnect

Successfully disconnected controller node from the cloud
10.0.2.15(config)# cloud connect

Successfully configured controller node for cloud access
10.0.2.15(config)#

big switch

Description

The cloud command is used to configure the controller to upload stats and log data from the controller
to a cloud server. Before connecting to the cloud you need to work with your contact at Big Switch
Networks to create a customer account on the cloud server and provision user(s) and cluster(s). Once this
has been done you should have at least one user/password credential, a customer account name, and a
cluster name. You are then ready to use the cloud command to finish the configuration.

The connect subcommand is used to specify the information needed to connect to the cloud. There are
two required arguments for the initial cloud configuration: auth-token and cluster. The auth token
is used to authenticate the local controller node to the cloud server. To obtain the auth token value:

1. Log in to the cloud server (https://support.bigswitch.com/) using the credentials
obtained from Big Switch Networks.

2. Navigate to the token generation page using the Token link in the upper right corner.

3. Click the "Generate new API token" button. This generates a 16 character APl/auth token (e.g.
3X4E-XYF9-EKX3-GFP7).

4. Copy the generated API/auth token value to paste to the CLI cloud command.

The cluster argument is a cluster ID, which is the cluster name qualified by the customer name. It is
composed of the customer name and the cluster name separated by a colon (e.g. "acme:engineering").

There are a few other optional arguments to the connect subcommand:

® sync-period: Time (in secs) between successive syncs of data to the cloud. Default is 5
minutes.

® sync-overlap: Overlap (in secs) of the time ranges of successive syncs of data to the cloud.
Default is 30 secs.

® cloud-host: Host name of the cloud server to use to sync data. Default is
support.bigswitch.com.

The only one of these you should change typically is the sync-period if you want syncing to happen
more or less frequently. The other ones you should only change if advised by Big Switch Networks.

After you've configured the controller to sync data to the cloud you can discontinue syncing using the
disconnect subcommand. This preserves the auth token value and other configuration info but
disables the sync process. You can later reenable syncing using the connect subcommand again but
without without having to specify the auth-token or cluster arguments.

To completely reset the cloud configuration use the reset subcommand. This deletes the cloud
configuration info including the auth token value.

Currently the cloud server only supports a single auth token per user. If you regenerate a new auth/API
token for the user the previous token value will now be invalid. This means that if you have a controller
that was configured to sync to the cloud using the old token value it will no longer be able to authenticate
to the cloud. You will need to update the token value using the connect subcommand with the
auth-token argument and the new token value (e.g. cloud connect auth-token
EFG4-5YPW-23BC-88SA).

https://support.bigswitch.com/

big switch

networls

4.4.2. controller-node

S v n t a x
controller-node <controller-node-id>

Examples:

10.0.2.15(config)# controller-node 127.0.0.1:6633
10.0.2.15(config-controller-node)# show this

IP Address : 127.0.0.1

Port : 6633

Active : True

Start Time : 2010-12-13 18:36:58.987000

10.0.2.15(config-controller-node)# listen-address 192.168.2.229

Description
This command allows creation and/or update of a specific controller node by placing the user into
config-controller-node mode.

The <controller-node-id> IP address + : + the port.

In this release, updating or creating controller nodes will not affect the operations of the core Beacon
applications. The information is written to the database strictly for informational purposes.

4.4.3. flow-entry
S v n t a x

flow-entry <name>

Note this command must be entered while in a config-switch submode.

Examples:

big switch

10.0.2.15(config)# switch 00:00:00:00:00:00:00:01
10.0.2.15(config-switch)# flow-entry sample
10.0.2.15(config-flow-entry)# help
For help on specific commands type help <topic>
<.oo>
Available fields for flow-entry:

actions

active

cookie

dst-ip

dst-mac

dst-port

ether-type

hard-timeout

idle-timeout

ingress-port

name

priority

protocol

src-ip

src-mac

src-port

switch

tos-bits

vlan-id

vlan-priority

wildcards

10.0.2.15(config-flow-entry)# ether-type 2048
10.0.2.15(config-flow-entry)# src-ip <tab-key-pressed>

< Src IP >: IP v4 source address in dotted decimal a.b.c.d w/
optional mask (ex: /24)

10.0.2.15(config-flow-entry)# src-ip 10.0.0.3
10.0.2.15(config-flow-entry)# dst-ip 10.0.0.4
10.0.2.15(config-flow-entry)# actions drop

Description

This command creates or updates a static flow entry for a switch. It also puts the user into a
config-flow-entry submode, where specific fields for the flow entry can be configured (see list of available
fields above). A flow entry has header fields, match rules, and actions - each of these can be configured as
fields in a flow entry in the configuration. The list of options and specific format can be obtained using
tab-completion in the CLI (note in the example above where it says tab-key-pressed).

More details on these fields can be found in the OpenFlow specification.
Header fields:

® priority - 16-bit unsigned integer, higher has more priority. By default, the priority of a statically
defined flow entry will be higher than the flow entries of the other applications, such as Learning

big switch

Switch and Routing.

® cookie - 32-bit integer
® hard-timeout - not used/hardwired in this release
® jdle-timeout - not used/hardwired in this release
® active - True/False
Match rules:
® wildcards - not used/automatically determined in this release
® src-mac,dst-mac - MAC addresses in xx:xx:xx:xx:xx format
® src-ip, dst-ip - IP addresses in dotted decimal format with an optional mask
® cther-type - 16-bit unsigned integer. Common values are 2048: IP, 2054:ARP. This field is required
in order for matching on IP address or ports.
protocol - 8-bit unsigned integer. Common values are 1: icmp, 6: tcp, 17: udp for IP ether-type.
src-port/dst-port - 16-bit unsigned integer. Corresponds to TCP/UDP ports or ICMP type/code.
vlan-id/vlan-priority - 16-bit unsigned integer and 8-bit unsigned integer.
'y NOTE
® Match rules that include information for higher-layer fields must include the fields
from lower layers or else they will not be applied. For example, a common mistake
is to match just on src-ip address and not specify the ether-type as being IP (2048).
In this case, the switch will decide it doesn't not know how to interpret the src-ip
address and it will wildcard the src-ip address field.
A c t i o n s

This is a comma-separated list of actions, where the actions include:

drop
output=<value> where value is one of:
® <port number>
® normal
flood
all
local
® ingress-port
enqueue=<openflow port id>:<queue id>
strip-vlan
set-vlan-priority=<priority>
set-vlan-id=<vlan id>
set-src-mac=<mac address>
set-dst-mac=<mac address>
set-tos-bits=<tos bits values>
set-src-ip=<ip address>
set-dst-ip=<ip address>
set-src-port=<port number>
set-dst-port=<port number>

big switch
ks

networ 5

Examples:

® To forward traffic to output ports 3 and 4, use the command:

actions output=3,output=4

' NOTE

® ‘'actions' command is not currently validated on entry and will allow typos,
mistakes, etc. to be entered. Please use care to enter the command correctly.
® |f no actions are specified for the flow-entry, the 'drop' action is implied

Flow entries will not appear on the switch unless the active field has been set to True. Once active has
been set to True, the Static Flow application will push this down to the switch every 10 seconds with a
hard-timeout of 30 seconds.

For example, below is a simple flow entry that blocks traffic for a specific src-ip and dst-ip - note it has no
actions specified, and so by default, the action is drop

switch 00:00:00:00:00:00:00:01
flow-entry deny-h4-h5
active True
ether-type 2048
src-ip 10.0.0.4
dst-ip 10.0.0.5

This flow entry appears on the switch as such:

10.0.2.15# show switch 00:00:00:00:00:00:00:01 flow

Switch Bytes Packets Dur(s) Cookie In
Port Src MAC Dst MAC Ether Type Src IP Dst IP Protocol Src

Port Dst Port

——————————————————————— Dl]] B It
0 0 29 static-deny-h4-h5 * * *

ip(20438) 10.0.0.4 10.0.0.5 * * *

Note the wildcarded fields and note the duration field will not usually exceed 10 seconds so long as the
flow entry is active.

If the user changes the match rules or deletes the flow entry, then the duration field will count up to the
hard-timeout of 30 seconds and then the flow entry will expire and be deleted from the switch.

4.4.4.host
S v n t a x

big switch
networlkhks

host <MAC address>

Examples:

10.0.2.15(config)# host 00:00:00:73:28:03
10.0.2.15(config-host)# name ceo-macbook-pro
10.0.2.15(config-host)# sh this

MAC Address : 00:00:00:73:28:03

Switch ID 2814895659608320

Ingress Port 43

IP Address : 0.0.0.0

Name : ceo-macbook-pro

Description

This command allows creation and/or update of a specific host by placing the user into config-host mode.
Hosts are written into the database by the Device Manager application with their MAC address and
switch/port that they were discovered on.

Currently, the name is blank but can be overridden manually. Switch ID and Ingress Port can also be
overwritten and this will change the behavior of the Routing application as the host will now be found on
a different port. For example, suppose host A on switch 1, port 1 is trying to reach host B on switch 2, port
2. If the user edits host B and configures it to be on switch 3, port 3, and a packet-in comes to the
controller needing a route from A to B, then the Routing application will push down flow mods to get to
switch 3, port 3.

4.4.5.1link

S v n t a x
link <link-id>

Examples:

10.0.2.15> show link

Src Switch DPID Src Port Dst Switch DPID Dst Port
----------------------- P B
00:00:00:00:00:00:00:01 15 00:0a:00:24:a8:c4:69:00 61
00:00:00:00:00:00:00:01 9 00:0a:00:21:£f7:de:e9:00 43
00:0a:00:21:£f7:de:e9:00 43 00:00:00:00:00:00:00:01 9
00:0a:00:24:a8:c4:69:00 61 00:00:00:00:00:00:00:01 15

10.0.2.15> enable; conf

10.0.2.15(config)# link
00:00:00:00:00:00:00:01-15-00:0a:00:24:a8:c4:69:00-61
10.0.2.15(config-1link)# show this

Src Switch DPID : 00:00:00:00:00:00:00:01

Src Port : 15
Dst Switch DPID : 00:0a:00:24:a8:c4:69:00
Dst Port : 61

10.0.2.15(config-1link)#

big switch

Description

This command allows creation and/or update of a specific link by placing the user into config-link mode.
Links are written into the database by the Topology application as it discovers the connectivity between
the switches.

A link id is the concatenation of the source switch DPID/port and destination switch DPID/port, joined by
the - character. See example above.

In this release, updating or creating links will not affect the operations of the Topology application. The
information is written to the database strictly for informational purposes.

4.4.6. port

S v n t a x
port [<port-id>]

Examples:

10.0.2.15# show port | grep -e 24 -e Switch -e '—---
Switch DPID OF # Name MAC Address
Configuration State Current Advertised Supported Peer
————— P] EE
24 24 00:26:e1:81:13:18 0x1
00:0a:00:24:a8:c4:69:00 52 28 00:24:a8:c4:69:cc
00:0a:00:24:a8:c4:69:00 54 30 00:24:a8:c4:69:ca
00:0a:00:24:a8:c4:69:00 56 32 00:24:a8:c4:69:c8
00:0a:00:24:a8:c4:69:00 57 33 00:24:a8:c4:69:c7
00:0a:00:24:a28:c4:69:00 58 34 00:24:a8:c4:69:¢c6
00:0a:00:24:a8:c4:69:00 61 37 00:24:a8:c4:69:c3
00:0a:00:24:a8:c4:69:00 64 40 00:24:a8:c4:69:c0
00:0a:00:24:a8:c4:69:00 65534 local 00:24:a8:c4:69:00
00:0a:00:24:a8:c4:69:00 67 43 00:24:a8:c4:69:bd
10.0.2.15# conf

10.0.2.15(config)# port 00:0a:00:24:a8:c4:69:00:67
10.0.2.15(config-port)# show this

Switch DPID : 00:0a:00:24:a8:c4:69:00
OF # : 67

Name : 43

MAC Address : 00:24:a8:c4:69:bd
Configuration : 0

State : 0

Current

Advertised

Supported

Peer

10.0.2.15(config-port)#

Description
This command allows creation and/or update of a specific port by placing the user into config-port mode.

big switch
g
networlks
Ports are written along with switches by the core Beacon application as it discovers switches connecting
to it.
A port id is the concatenation of the switch DPID and the logical OpenFlow port number joined by a :.

In this release, updating or creating ports will not affect the operations of the core Beacon applications.
The information is written to the database strictly for informational purposes.

4.4.7. switch

S v n t a x
switch <switch-dpid>

Examples:

10.0.2.15(config)# switch 00:0a:00:21:f7:de:e9:00
10.0.2.15(config-switch)# show this

Switch DPID : 00:0a:00:21:f7:de:e9:00
Active : True

Last Connect Time : 2010-12-15 01:21:33.667000
IP Address : 192.168.2.102

Socket Address : /192.168.2.102:41886

Max Packets : 256

Max Tables : 2

Capabilities : 135

Actions : 2047

Description

This command allows creation and/or update of a specific switch by placing the user into config-switch
mode. Switches are written along with ports by the core Beacon application as it discovers switches
connecting to it.

In this release, switches appear in the running config as they connect to the controller. The main purpose
of this command is allow the user to define static flow entries for a particular switch.

The "alias" field can be configured while in config-switch mode. This alias will be usable as an argument to
show switch commands (instead of a full 8-byte DPID) and will be displayed instead of the DPID in various
show commands.

4.4.8. no

S v n t a x
no (controller-node | flow-entry | host | link | port | switch) <id>

Examples:

big switch

10.0.2.15(config-switch)# show run | begin switch
switch 00:00:00:00:00:00:00:01
flow-entry deny-h4-h5
active False
ether-type 2048
src-ip 10.0.0.4

dst-ip 10.0.0.5
]

switch 00:00:00:00:00:00:00:02
]

switch 00:00:00:00:00:00:00:03
10.0.2.15(config-switch)# no flow-entry deny-h4-h5
10.0.2.15(config-switch)# show run | begin switch

switch 00:00:00:00:00:00:00:01
1

.

switch 00:00:00:00:00:00:00:02
1

switch 00:00:00:00:00:00:00:03

Description

This command allows the deletion of objects in the database. There is no confirmation, so this command
should be used with caution. Operations of the controller will not be affected by the deletion of some of
the informational-only data as specified earlier (host, link, port, controller node). However, deleting
switches and flow entries will change the flow entries that are on the switches and may affect forwarding.

5. REST API

5.1. Introduction

This document describes the REST APl supported by the Big Switch controller platform. The REST API
provides access to the network database that includes both the configuration data for the controller (e.g.
static flow table entries) as well as the data for dynamically created network entities (e.g. switches, hosts)
populated by the beacon controller.

The REST APl is implemented in a separate process (i.e. "bigcon") from the beacon controller. The beacon
controller has its own REST API for obtaining real-time data like flow table entries. This document only
describes the network database REST API, not the beacon REST API.

The REST API is accessed on port 8000 of the controller machine/VM. If the client application is running
on a remote machine, then the firewall settings on the controller machine need to be configured to allow
access to port 8000:

1. ssh to the controller machine: "ssh admin@<controller-ip>". This will put you in the Big Switch CLI.
2. Escape out to bash: "debug bash"
3. Allow access on port 8000: "sudo ufw allow 8000"

big switch

5.2. Querying Items

Items are queried wusing the HTTP GET method. The form of the URL is:
http://<domain-or-ip-address>:8000/rest/<data-type>/<optional-id>/?<optional-query-params>

The data types currently supported are:

controller-node: The individual controller nodes/instances in the overall controller platform
switch: The switches associated with this controller

port: The port info for the switches

host: The host devices connected to the switches associated with this controller

link: The links between switches

flow-entry: The statically configured flow table entries

[TBD: Should have info about the fields for each of the data types. For now you can just experiment with
queries for each of the types and look at what fields are there. The fields should be pretty
self-explanatory for controller-node, host, and link. For switch, port and flow-entry you can look at the
descriptions of the ofp_switch_features, ofp_phy_port and ofp_match structs in the OpenFlow spec. The
fields in the REST API data types pretty much mirror those structs.]

If the optional ID and query params are omitted, then the REST API returns a list of all of the items of the
given data type. The format of the return data is JSON. So, for example, to get all of the controller nodes:
URL http://localhost:8000/rest/controller-node/

Return [{"active": true, "listen-address": "192.168.1.1", ‘'listen-port": 6633, "last-startup":
Text "2010-12-29 19:28:03.429000", "id": "192.168.1.1:6633"}]

This is assuming the REST call is being made from the controller VM so it can use localhost for the IP
address; otherwise use the actual IP address of the controller VM instead of the loopback address.

If you know the unique ID of a data item you can retrieve just that item by including the optional ID in the
URL path:
URL http://localhost:8000/rest/switch/00:00:00:00:00:00:00:01/

Return {"tables": 3, "socket-address": "/192.168.2.29:60286", "connected-since": "2010-12-30
Text 23:24:21.025000", "capabilities": 71, "controller": "192.168.1.1:6633", "actions": 2049,
"ip-address": "192.168.2.29", "dpid": "00:00:00:00:00:00:00:01", "active": true, "buffers": 256}

Note that this returns a single item, not a list of items (i.e. no enclosing square brackets)
The unique ID fields for the different data types are:
Data Type ID Field Name Description

controller-node id <controller IP address>:<listen port>

switch dpid Datapath ID of the switch

http://localhost:8000/rest/controller-node/
http://localhost:8000/rest/switch/00:00:00:00:00:00:00:01/

big switch

port id <switch DPID>:<port #>

link id <src switch DPID>zsTTport><dst switch DPID>-<dst port>
host mac MAC address of the host

flow-entry name User-defined name of the static flow entry

You can also do more complex queries using the optional query params. Note that if you do a query with
the query params you should not set the optional ID in the URL path; those query modes are mutually
exclusive. The format of the query params is the same as for standard query params: a
semicolon-separated list of <name>=<value> pairs. In the simplest case the <name> is the name of a field
in the data type being queried and the <value> is the value of that field you want to filter the query with.
For example, to get all of the hosts connected to the switch whose DPID is 00:00:00:00:00:00:00:01:

URL http://192.168.1.1:8000/rest/host/?switch=00:00:00:00:00:00:00:01

Return [{"switch": "00:00:00:00:00:00:00:01", "mac": "00:11:11:e2:45:b7", "name": "", "ip-address":
Text "192.168.1.19", "ingress-port": 1}, {"switch": "0:00:00:00:00:00:00:01", "mac":
"00:16:cb:94:49:25", "name": "", "ip-address": "192.168.1.23", "ingress-port": 2}]

If you include multiple name/value pairs then the return text is the list of items that satisfies all of the
conditions (i.e. the conditions are AND'd together).

You can also do more complex filtering operations using a special form of the name in the name/value
pairs: <field-name>__<operation>. Note that that's a double underscore between the field name and the
operation. For example to get all of the hosts whose MAC address starts with 00:00:00 you can use the
startswith operation:

URL http://localhost:8000/rest/host/?mac__startswith=00:00:00

Return [{"switch": "00:0a:00:24:a8:c4:69:00", "mac": "00:00:00:00:00:01", "name": "", "ip-address":
Text "192.168.1.19", "ingress-port": 1},{"switch": "00:0a:00:24:a8:¢c4:69:00", "mac":
"00:00:00:00:00:02", "name": "", "ip-address": "192.168.1.23", "ingress-port": 2}]

The supported filtering operations are:

Operation Name Description

exact Exact match of specified value. Equivalent to setting the name to just the field name
iexact Case insensitive match of the specified value

contains The field contains the specified value, case-sensitive

icontains The field contains the specified value, case-insensitive

startswith The field starts with the specified value, case-sensitive

istartswith The field starts with the specified value, case-insensitive

endswith The field ends with the specified value, case-sensitive

http://192.168.1.1:8000/rest/host/?switch=00:00:00:00:00:00:00:01
http://localhost:8000/rest/host/?mac__startswith=00:00:00

big switch

iendswith The field ends with the specified value, case-insensitive

gt The field is greater than the specified value

gte The field is greater than or equal to the specified value

It The field is less than the specified value

Ite The field is less than or equal to the specified value

regex The field matches the specified regular expression, case-sensitive
iregex The field matches the specified regular expression, case-insensitive

The syntax of the regular expressions for the regex and iregex operations is the Python regular expression
syntax.

There are also some special query parameters that can be used to affect how the results are returned
from a query:

Query Description
Parameter
Name

callback Return query results in the JSONP format with the specified value as the JSONP function
name. Google "JSONP" for more info on why you'd want to use this feature.

nolist If specified value is true (or True or 1), then return a single item, not a list (i.e. no enclosing
square brackets]. This returns an error if there's not exactly one item that satisfies the
query parameters.

orderby Order the results by the specified value. The value is a comma-separated list of field names
to use to sort the results, in decreasing precedence. So, for example, to order the results
from a host query first on the switch, then on the ingress port, the orderby value would be
"switch,ingress-port".

5.3. Creating Items

New items can be created using the HTTP PUT method with a URL path of: "/rest/<data-type>/". The PUT
data is the JSON formatted data for the item (or items) to be created. Each item should be a JSON object
(i.e. comma-separated list of field name/value pairs bracketed with curly brackets) with the fields of the
given data type specified. In some cases some of the fields are optional and can be omitted. [TBD: Need
descriptions of which fields are optional for each of the data types.] You can insert multiple items in a
single REST call by specifying a JSON array of objects (i.e. comma-separated list of JSON objects bracketed
with square brackets). Basically the format of the data is the same as you see when you query for items as
described in the previous section.

Note that this use of the PUT method to create items isn't the conventional REST way of creating items
(normal way is to use the POST method). But using the POST method with POST parameters it wouldn't be
possible to create multiple items in one call, which is why we use the PUT method instead.

big_ swil_:ch

Most of the data types currently exposed in the REST API aren't intended to be modified by third party
apps, only by the controller. You don't want to make changes to the controller-node, switch, port, and link
types, unless you really know what you're doing. Soon there will be a real security model for the REST API
with authentication/authorization that will prevent unprivileged apps from modifying many of these
things, but until then, be aware that you can really mess up the controller if you change these things.

For now the main thing that third party apps will modify/create are the static flow table entries.

5.4. Updating Items

Items are updated using the HTTP PUT method. The difference between updating vs. creating is that the
item (or items) to be updated must be specified using either the option ID component of the URL path or
query parameters. If you use the option ID in the URL path, then only that single item is updated. If you
use query parameters, then any items matching the query parameter conditions are updated. The PUT
data is a JSON object that includes the field names/values to be updated. The return value is the string
"saved" if the update succeeded. [Note: This will probably change sometime soon to return
JSON-formatted text indicating that the operation succeeded to be consistent with the other calls]. See
the "Error Handling" section below for information about how errors are handled.

For example, to set the name of the host whose MAC is "00:00:00:00:00:01" to "Test Server":

URL http://localhost:8000/rest/host/00:00:00:00:00:01/

PUT Data {"name":"Test Server"}

And to set the name of all hosts whose MAC starts with "c4:2c¢:03" to "MacBook":

URL http://localhost:8000/rest/host/?mac__startswith=c4:2c:03

PUT Data {"name":"MacBook"}

5.5. Deleting Items

Items are deleted using the HTTP DELETE method. Similar to updating items you specify the item(s) to be
deleted using either the optional ID component in the URL path (to delete a single item) or the optional
query parameters (to delete multiple items). Just to repeat the earlier warning: The only data type you
should delete currently is the flow-entry data type. Bad things will probably happen if you delete switch,
port, host, link info out from under the controller. The return value is the string "deleted" if the delete
operation succeeded. [Note: This will probably change sometime soon to return JSON-formatted text
indicating that the operation succeeded to be consistent with the other calls]. See the "Error Handling"
section below for information about how errors are handled.

For example to delete the flow entry named "testping":

URL http://localhost:8000/rest/flow-entry/testping/

5.6. Storing Data Blobs

http://localhost:8000/rest/host/00:00:00:00:00:01/
http://localhost:8000/rest/host/?mac__startswith=c4:2c:03
http://localhost:8000/rest/flow-entry/testping/

big switch

The REST API also supports storing & retrieving arbitrary data blobs from the network database. For
example, the Big Switch CLI uses this to store/archive configuration scripts in the database. The format of
the URL for the data blobs is: "http://<domain>:8000/rest/data/<blob-name>/". To store blob data you
use the HTTP PUT method where the PUT data is the raw blob data. To retrieve data you use the HTTP
GET method. The data that's returned is the exact data that was stored in the earlier PUT call (i.e. there's
no enclosing JSON formatting or anything else).

When storing data the REST APl implementation looks for the Content-Type header in the HTTP request.
If it's specified, then this value is saved along with the data and returned as the Content-Type header
when the data is retrieved. You can also specify a query parameter of "binary" set to "true" to indicate
that the data is binary data. In this case the REST APl will set the content type to be
"application/octet-stream". If neither the Content-Type header nor the binary query parameter is
specified the data is assumed to be text data and the content type is set to "text/plain".

There's no particular format for the blob name imposed by the REST API. It can contain alphanumeric
characters as well as any of the following punctuation characters: "_:./=;-". By convention it's useful to
think of the name as an absolute path in a virtual file system with '/' as the path separator. That way you
can group different types of data in logical directories and query for data blobs (described below) using
the startswith filter operation. Currently we don't have any guidelines for reserved names in the global
namespace, but for now you should prefix any blob names with something that you are reasonably
certain will be globally unique to avoid conflicts with how Big Switch or another third party uses the data
blob namespace.

You can also query to get a list of blobs matching some specified criteria. In this case the URL is
"http://<domain>:8000/rest/data/?<query-params>" where the query parameters specify the criteria
similar to querying other types of data in the REST API. The following fields are available for querying:
Field Name Description

name The name of the data blob

content_type The content type of the data blob

The return value is a JSON formatted list of data blob references, where each blob reference contains the
name of the blob and the URL path to access that data blob.

For example, to get all of the data blobs whose names starts with "/bigswitch/config/":

URL http://localhost:8000/rest/data/?name__startswith=/bigswitch/config/

Return [{"name":"/bigswitch/config/running",
Text "url_path":"rest/data/bigswitch/config/running"},{"name":"/bigswitch/config/backup",
"url_path":"rest/data/bigswitch/config/backup"}]

5.7. Retrieving Stats Data

The controller collects time-sampled stats from the controller node and the switches that are connected
to the controller.

http://localhost:8000/rest/data/?name__startswith=/bigswitch/config/

big switch

These stats data are retrieved using the following URL:
http://<domain-or-ip-address>:8000/rest/v1/stats/<target-type>/<customer-id>/<target-id>/<stat-type>?

The return text is a JSON-formatted array of time/value tuples or error info (see error handling section
below). The time value is an integer UTC time in milliseconds since the epoch. The value is dependent on
the type of stats value being retrieved. For example, the return text for a query for the mem-used stat
type might be something like:

[[1303307359476, 870156], [1303308019478, 870416], [1303311619488, 869844]]

The <target-type> is the type of the source of the stats data. The <target-id> identifies a specific instance
of the target type. Currently there are two target types:

Target Description Target ID
Type

controller Stats associated with The ID of the controller node. Currently we only support a single
a controller node node controller, so the ID is hard-coded to be "localhost"

switch Stats associated with = The DPID of the switch, e.g. 00:00:00:00:00:00:00:01
a switch

The <customer-name> is included for future multi-tenant stats support. Currently we only support a
single tenant and the customer ID is hard-coded to be "default"

The <stat-type> identifies the specific time series stats data being retrieved, e.g. "cpu-user",
"OFPacketIn").

The <optional-query-params> are used to specify the time range for the query and how the data is
downsampled to return a manageable number of data points. The raw sample data for different stat
types is sampled at frequencies that are configured for the controller process that collects stats. Currently
these are only configurable by editing a config file on the controller system, but eventually we will
support configuration via the CLI or web Ul. The raw sampling frequencies can be as frequent as every
few seconds. If an application retrieves stats data over a much longer period (e.g. days, weeks), then it
would be too much data to return the raw sample data, so the REST API supports downsampling of the
data, as specified in the query parameters described below.

The following query params are supported:

Query Param Description

start-time The start time for the data to return.

end-time The end time for the data to return. Time format is the same as start-time
sample-interval = The interval between sample points

sample-count The number of sample points returned

sample-window The time window around each sample point used to calculate the value

big switch

data-format The format of the returned data

All time values, both specific times and time intervals, are integer values in milliseconds. For specific
times, the value is UTC time in milliseconds since the epoch (where epoch = Unix epoch = midnight
1/1/1970 UTC). For example, in Python this is: "int(time.time()*1000)". In general the epoch is
system-dependent, so it may be necessary to adjust the time value to use time values that are consistent
with what the controller uses.

If neither the start-time nor end-time are specified, then the REST call returns the most recently collected
sample point. In this case the return value is a single data point (e.g. "[1303311619488, 869844]") not a
list of sample points.

The sample-interval and sample-count params are mutually exclusive. Specifying the sample-count is
equivalent to specifying a sample-interval of: (end-time - start-time) / sample-count. If the
sample-interval is 0, then the raw data samples are returned. If neither the sample-interval nor
sample-count params are specifies, then the REST call defaults to a sample-count value of 50.

The controller only supports certain pre-defined downsampling intervals. These are: 1 minute, 10
minutes, 1 hour, 4 hours, 1 day, 1 week and 4 weeks. The sample-interval (determined as described
above) is rounded down to the nearest pre-defined sampling interval.

Currently two data-format values are supported:

Data Format Description
value The sample value

rate The rate at which the sample value is changing (in units per millisecond)

The "value" data format returns the value of the sample point. For REST calls with downsampling, if the
sample-window is 0, then each returned value is the value of the raw data point at the beginning of each
downsampled interval. If the sample-window is non-zero, then the value return is the average of all of the
raw sample data points over the specified window, centered around the time of the returned data point.

The "rate" data format returns the rate at which the sample value is changing. If the sample-window is O,
then the rate is calculated using the previous sample point, i.e. rate = (current.value - previous.value) /
(current.time - previous.time)). The rate is returned in units per millisecond, where the units depend on
the stats type being returned. If the sample-window is non-zero, then the rate is calculated using the first
and list sample points in the specified window, centered around the time of the returned data point.

The following controller-related stat types are supported:

Stat Name Description
cpu-idle The CPU idle percentage reported by top
cpu-nice The CPU nice percentage reported by top

cpu-user The CPU user percentage reported by top

big switch

cpu-system The CPU system percentage reported by top
mem-used The memory used reported by top
mem-free The memory free reported by top

swap-used ' The swap used reported by top
The following switch-related stat types are supported:
Stat Name Description

OFPacketln ' The count of OpenFlow packet in events received by the controller from the switch

OFFlowMod ' The count of OpenFlow flow mod commands sent from the controller to the switch

The values are counters since the last time the controller was restarted.

The flow mod counter includes commands that add or delete flow mods on the switch. Due to the way
the controller handles flow mods there are typically 3 flow mod commands per packet in event that is
forwarded.

Here are some examples:

To get the latest mem-used

URL http://<ip>:8000/rest/v1/stats/controller/default/localhost/mem-used

To get the last hour of mem-used:

URL http://<ip>:8000/rest/v1/stats/controller/default/localhost/mem-used?start-time=130288851626(

To get the most recent OFPacketln value for switch 00:00:00:00:00:73:28:02:

URL http://<ip>:8000/rest/v1/stats/switch/default/00:00:00:00:00:73:28:02/0FPacketIn

To get the last day of OFPacketln:

URL http://<ip>:8000/rest/v1/stats/switch/default/00:00:00:00:00:73:28:02/0FPacketIn?start-time=13(

To get the last day of OFPacketIn rates:

URL http://<ip>:8000/rest/v1/stats/switch/default/00:00:00:00:00:73:28:02/0FPacketIn?start-time=13(

5.8. Error Handling

If there's an error processing the REST request, then the REST API returns an appropriate HTTP error code
and the body of the response is a JSON object containing several fields:

big switch
ks

networ 5

Field Name Description

error_type The type of the error/exception. This maps to the name of the exception that was
thrown by the REST implementation.

description A human-readable description of the error

model_error The model-level validation error
(optional)

field_errors The per-field validation errors
(optional)

The model_error and field_errors fields are only set if the error occurred during validation of the input
data when creating or updating a data item. You get these errors if the format of the input doesn't match
the expected format of the field you're setting (e.g. trying to set an IP address field to something that
doesn't have the format of an IP address).

5.9. Sample Code

5.9.1. Python

import json
import urllib2

def construct_rest_url(host, type, id=None, query params=None):
Construct the REST URL for the given host/type/id, including the
items in the query_params dict as URL-encoded query parameters
url = 'http://%s:8000/rest/%s/' % (host, type)
if id:
url += id
url += '/
if query_params:
url += '?2'
url += urllib.urlencode(query_params)
return url

Extract the error information and print it.

This is mainly intended to demonstrate how to extract the
error info from the exception. It may or may not make sense
to print out this information, depending on the application.
Extract the info from the exception

error_code = e.getcode()

response_text = e.read()

obj = json.loads(response_text)

error_type = obj.get('error_type')

description = obj.get('description')

Print the error info
print 'HTTP error code =
description

, error_type, '; description = ',

, error_code, '; error_type =

Print the optional validation error info
model_error = obj.get('model_error')

i def print_rest_error_info(e):

big switch

networls

if model error:

print 'model_error = ', model_error
field_errors = obj.get('field errors')
if field errors:

print 'field errors = ', field_errors

def get_rest_data(host, type, id=None, query_param dict=None):

Get the data for the given type/id/params from the give host.
If both id and query_param dict are None, then the return value
is the list of all objects of the given type, represented as an
array of dicts. If the id is set, the the return value is the
single object with that id, represented as a dict. If filtering
parameters are specified in the query_param dict, thenn the return
value is the list of objects that match the filtering criteria.
url = construct_rest_url(host, type, id, query_param dict)
request = urllib2.Request(url)
try:

response = urllib2.urlopen(request)

response_text = response.read()

obj = json.loads(response_text)

return obj
except urllib2.HTTPError, e:

print_rest_error_info(e)

raise e

def put_rest_data(obj, host, type, id=None, query param_ dict=None):
Put the given object data to the given type/id/params at the given host.
If both the id and query_param dict are empty, then a new item is created.
Otherwise, existing data items are updated with the object data.
url = construct_rest_url(host, type, id, query_param dict)
post_data = json.dumps(obj)
request = urllib2.Request(url, post_data, {'Content-Type':'application/json'})
request.get_method = lambda: 'PUT'
try:
response = urllib2.urlopen(request)
return response.read()
except urllib2.HTTPError, e:
print_rest_error_info(e)
raise e

def delete_rest_data(host, type, id=None, query_param dict=None):

Delete data items of the given type/id/params at the given host.
If both id and query param_dict are None, then all objects of the
given type are deleted. If the id is set, then the object with that
id is deleted. If filtering parameters are specified in the
query_param_dict, then the objects that match the filtering criteria
are deleted.
url = construct_rest_url(host, type, id, query param dict)
request = urllib2.Request(url)
request.get_method = lambda: 'DELETE'
try:

response = urllib2.urlopen(request)

return response.read()
except urllib2.HTTPError, e:

print_rest_error_info(e)

raise e

Get all hosts
hosts = get_rest_data('localhost', 'host')

Get host with MAC address of 00:00:00:00:00:01
one_host = get_rest_data('localhost', 'host', '00:00:00:00:00:01")

Update the name of the host whose MAC address is 00:00:00:00:00:01
name_info = {'name':'test'}
saved_message = put_rest_data(name_info, 'localhost', 'host', '00:00:00:00:00:01")

big switch

networlkhks

Delete the static flow table entry named "testl"
deleted_message = delete_rest_data('localhost', 'flow-entry', 'testl')

Delete all static flow table entries whose name starts with "test"
deleted_message = delete_rest_data('localhost', 'flow-entry', None,
{'name__startswith':'test'})

5.9.2. Bash Shell with curl
Getting the list of models and getting a list of switches and flow-entries:

$ curl http://192.168.2.229:8000/rest/

[{"url_path": "rest/controller-node/", "name": "controller-node"}, {"url path": "rest/switch/",
"name": "switch"}, {"url path": "rest/host/", "name": "host"}, {"url path": "rest/link/",
"name": "link"}, {"url_path": "rest/flow-entry/", "name": "flow-entry"}, {"url_path": "rest
/port/", "name": "port"}]

$ curl http://192.168.2.229:8000/rest/switch/

[{"tables": 3, "socket-address": "/192.168.2.28:41387", "connected-since": "2010-12-29
19:28:06.665000", "capabilities": 71, "controller": "127.0.0.1:6633", "actions": 2049,
"ip-address": "192.168.2.28", "dpid": "00:00:00:00:00:00:00:01", "active": true, "buffers":
256}, {"tables": 2, "socket-address": "/192.168.2.102:40973", "connected-since": "2010-12-29
19:28:07.334000", "capabilities": 135, "controller": "127.0.0.1:6633", "actions": 2047,
"ip-address": "192.168.2.102", "dpid": "00:0a:00:21:f7:de:e9%9:00", "active": true, "buffers":
256}, {"tables": 2, "socket-address": "/192.168.2.101:65152", "connected-since": "2010-12-29
19:28:07.116000", "capabilities": 135, "controller": "127.0.0.1:6633", "actions": 2047,
"ip-address": "192.168.2.101", "dpid": "00:0a:00:24:a8:c4:69:00", "active": true, "buffers":
256}]

$ curl http://192.168.2.229:8000/rest/flow-entry/

[{"wildcards": 0, "protocol": 1, "name": "pingblock", "idle-timeout": 10, "actions": "drop",
"priority": 32768, "switch": "00:0a:00:21:f7:de:e9:00", "cookie": 0, "ether-type": 2048,
"active": false, "hard-timeout": 10}]

Adding a flow-entry (note the PUT in the curl command-line and watching the quoting of the JSON) and
then checking the list of flow-entries again:

$ curl -X PUT -d '{"name":"testing", "src-ip":"192.192.192.1", "active":"True", "switch":
"00:00:00:00:00:00:00:01", "ether-type":"2048"}' http://192.168.2.229:8000/rest/flow-entry/
saved

$ curl http://192.168.2.229:8000/rest/flow-entry/

[{"wildcards": 0, "protocol": 1, "name": "pingblock", "idle-timeout": 10, "actions": "drop",
"priority": 32768, "switch": "00:0a:00:21:f7:de:e9:00", "cookie": 0, "ether-type": 2048,
"active": false, "hard-timeout": 10}, {"wildcards": 0, "name": "testing", "idle-timeout": 60,
"src-ip": "192.192.192.1", "priority": 32768, "switch": "00:00:00:00:00:00:00:01", "cookie": 0,
"ether-type": 2048, "active": true, "hard-timeout": 0}]

Just for reference, this newly added flow-entry looks like this in the running config and in the show
command in the CLI:

big switch

networlkhks

192.168.2.229:8000> sh run

begin switch | head -6
i switch 00:00:00:00:00:00:00:01

: flow-entry testing

i active True

i ether-type 2048

i src-ip 192.192.192.1

]

! 192.168.2.229:8000> show switch 00:00:00:00:00:00:00:01 flow
i Bytes Packets Dur(s) Cookie In Port Src MAC Dst MAC Ether Type Src IP Dst IP
i Protocol Src Port Dst Port

i | | \ | | | | \ | |

0 10 static-testing * * * ip(2048) 192.192.192.1 * *

* *

192.168.2.229:8000>

There are also REST commands at the console (port 8000) to get the realtime data from Beacon (which in
turn gets it directly from a switch), but the formatting currently isn't done in the django/port 8000 REST
layer (formatting is currently done in the CLI), so the output may not be directly understandable. Still, it's
useful sometimes to get it from the switch:

$ curl http://192.168.2.229:8000/rest/realtimestats/desc/00:00:00:00:00:00:00:01/
[{"serialNumber":"None", "manufacturerDescription":"Stanford University", "hardwareDescription":
"Reference Userspace Switch","softwareDescription":"1.0.0","datapathDescription":"GSM-7328-1
pid=795","length":1056}]

i $ curl http://192.168.2.229:8000/rest/realtimestats/flow/00:00:00:00:00:00:00:01/

E [{"match":{"dataLayerDestination":"AAAAAAAA", "dataLayerSource":"AAAAAAAA", "networkSource"

i :-1061109759, "dataLayerType":2048, "dataLayerVirtualLan":0,

i "dataLayerVirtualLanPriorityCodePoint":0, "inputPort":0, "networkDestination":0,

i "networkDestinationMaskLen":0, "networkSourceMaskLen":32, "networkProtocol":0,

i "networkTypeOfService":0, "transportDestination":0,"transportSource":0, "wildcards":4178159},

E "cookie":45732403745914880,"idleTimeout":0, "durationSeconds":7, "durationNanoseconds":192000000,
| "packetCount":0,"byteCount":0, "hardTimeout":30,"tableId":0,"length":88,"actions":[],"priority"
i :-32768}]

