CORD-1419 CORD-1425 CORD-1496 CORD-639 Changes for dual-ToRs

Introduces the concept of edge-pairs (or paired-ToRs) which
can have some subnets/prefixes reachable by both ToRs.
   - Each ToR can also have prefixes reachable only by itself,
     even though it is part of an edge-pair.
   - The paired link between ToRs in an edge-pair is ignored
     for ECMP calculations.
   - Required a change in how destinations and next-hops are stored.
     The neighborSet is now a destinationSet, and no longer carries
     next-hop info, which is now stored in NextNeighbors. As a result,
     the DestinationSetNextObjectiveStoreKey and ECMP group id do not
     change as next-hops come and go.
   - It is now possible to have buckets in hash groups with the same
     outport but different labels.
   - DefaultRoutingHandler has been rearraged to be more readable, and
     clearly highlight the three major ways that routing changes can
     happen in the network.

Also fixes the case where config is added after switches connect to the controller.

Change-Id: I7ce93ab201f6ef2c01cbe07a51ee78cd6a0a112e
22 files changed
tree: e264d3ce489a150fbb50aeee066e55c5d367321d
  1. .buckconfig
  2. .dockerignore
  3. .gitignore
  4. .gitreview
  5. BUCK
  6. Dockerfile
  7. Jenkinsfile
  8. LICENSE.txt
  9. README.md
  10. apps/
  11. buck-tools/
  12. bucklets/
  13. cli/
  14. core/
  15. docs/
  16. drivers/
  17. features/
  18. incubator/
  19. lib/
  20. models/
  21. modules.defs
  22. onos.defs
  23. pom.xml
  24. protocols/
  25. providers/
  26. tools/
  27. utils/
  28. web/
README.md

ONOS : Open Network Operating System

What is ONOS?

ONOS is a new SDN network operating system designed for high availability, performance, scale-out.

Top-Level Features

  • High availability through clustering and distributed state management.
  • Scalability through clustering and sharding of network device control.
  • Performance that is good for a first release, and which has an architecture that will continue to support improvements.
  • Northbound abstractions for a global network view, network graph, and application intents.
  • Pluggable southbound for support of OpenFlow and new or legacy protocols.
  • Graphical user interface to view multi-layer topologies and inspect elements of the topology.
  • REST API for access to Northbound abstractions as well as CLI commands.
  • CLI for debugging.
  • Support for both proactive and reactive flow setup.
  • SDN-IP application to support interworking with traditional IP networks controlled by distributed routing protocols such as BGP.
  • IP-Optical use case demonstration.

Checkout our website and our tools