[ONOS-4879][ONOS-5024][ONOS-5025]TE Topology NBI

The APP introduces IETF TE Topology YANG models as RESTCONF NBI,
and it works as an adapter for data conversion between
YMS(YANG generated JAVA classes) and TE Topology Core subsystem.

The APP implements the following interfaces:
IetfNetworkService Interface
IetfTopologyService Interface
IetfNetworkTopologyService Interface

Change-Id: I761ff684bde4b64ca42bb1b0d5b1ddfb8a2377fd
diff --git a/apps/tenbi/yangmodel/src/main/yang/ietf-inet-types.yang b/apps/tenbi/yangmodel/src/main/yang/ietf-inet-types.yang
new file mode 100644
index 0000000..5388b03
--- /dev/null
+++ b/apps/tenbi/yangmodel/src/main/yang/ietf-inet-types.yang
@@ -0,0 +1,461 @@
+module ietf-inet-types {
+
+  namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
+  prefix "inet";
+
+  organization
+   "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
+
+  contact
+   "WG Web:   <http://tools.ietf.org/wg/netmod/>
+    WG List:  <mailto:netmod@ietf.org>
+
+    WG Chair: David Kessens
+              <mailto:david.kessens@nsn.com>
+
+    WG Chair: Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>
+
+    Editor:   Juergen Schoenwaelder
+              <mailto:j.schoenwaelder@jacobs-university.de>";
+
+  description
+   "This module contains a collection of generally useful derived
+    YANG data types for Internet addresses and related things.
+
+    Copyright (c) 2013 IETF Trust and the persons identified as
+    authors of the code.  All rights reserved.
+
+    Redistribution and use in source and binary forms, with or
+    without modification, is permitted pursuant to, and subject
+    to the license terms contained in, the Simplified BSD License
+    set forth in Section 4.c of the IETF Trust's Legal Provisions
+    Relating to IETF Documents
+    (http://trustee.ietf.org/license-info).
+
+    This version of this YANG module is part of RFC 6991; see
+    the RFC itself for full legal notices.";
+
+  revision 2013-07-15 {
+    description
+     "This revision adds the following new data types:
+      - ip-address-no-zone
+      - ipv4-address-no-zone
+      - ipv6-address-no-zone";
+    reference
+     "RFC 6991: Common YANG Data Types";
+  }
+
+  revision 2010-09-24 {
+    description
+     "Initial revision.";
+    reference
+     "RFC 6021: Common YANG Data Types";
+  }
+
+  /*** collection of types related to protocol fields ***/
+
+  typedef ip-version {
+    type enumeration {
+      enum unknown {
+        value "0";
+        description
+         "An unknown or unspecified version of the Internet
+          protocol.";
+      }
+      enum ipv4 {
+        value "1";
+        description
+         "The IPv4 protocol as defined in RFC 791.";
+      }
+      enum ipv6 {
+        value "2";
+        description
+         "The IPv6 protocol as defined in RFC 2460.";
+      }
+    }
+    description
+     "This value represents the version of the IP protocol.
+
+      In the value set and its semantics, this type is equivalent
+      to the InetVersion textual convention of the SMIv2.";
+    reference
+     "RFC  791: Internet Protocol
+      RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
+      RFC 4001: Textual Conventions for Internet Network Addresses";
+  }
+
+  typedef dscp {
+    type uint8 {
+      range "0..63";
+    }
+    description
+     "The dscp type represents a Differentiated Services Code Point
+      that may be used for marking packets in a traffic stream.
+      In the value set and its semantics, this type is equivalent
+      to the Dscp textual convention of the SMIv2.";
+    reference
+     "RFC 3289: Management Information Base for the Differentiated
+                Services Architecture
+      RFC 2474: Definition of the Differentiated Services Field
+                (DS Field) in the IPv4 and IPv6 Headers
+      RFC 2780: IANA Allocation Guidelines For Values In
+                the Internet Protocol and Related Headers";
+  }
+
+  typedef ipv6-flow-label {
+    type uint32 {
+      range "0..1048575";
+    }
+    description
+     "The ipv6-flow-label type represents the flow identifier or Flow
+      Label in an IPv6 packet header that may be used to
+      discriminate traffic flows.
+
+      In the value set and its semantics, this type is equivalent
+      to the IPv6FlowLabel textual convention of the SMIv2.";
+    reference
+     "RFC 3595: Textual Conventions for IPv6 Flow Label
+      RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
+  }
+
+  typedef port-number {
+    type uint16 {
+      range "0..65535";
+    }
+    description
+     "The port-number type represents a 16-bit port number of an
+      Internet transport-layer protocol such as UDP, TCP, DCCP, or
+      SCTP.  Port numbers are assigned by IANA.  A current list of
+      all assignments is available from <http://www.iana.org/>.
+
+      Note that the port number value zero is reserved by IANA.  In
+      situations where the value zero does not make sense, it can
+      be excluded by subtyping the port-number type.
+      In the value set and its semantics, this type is equivalent
+      to the InetPortNumber textual convention of the SMIv2.";
+    reference
+     "RFC  768: User Datagram Protocol
+      RFC  793: Transmission Control Protocol
+      RFC 4960: Stream Control Transmission Protocol
+      RFC 4340: Datagram Congestion Control Protocol (DCCP)
+      RFC 4001: Textual Conventions for Internet Network Addresses";
+  }
+
+  /*** collection of types related to autonomous systems ***/
+
+  typedef as-number {
+    type uint32;
+    description
+     "The as-number type represents autonomous system numbers
+      which identify an Autonomous System (AS).  An AS is a set
+      of routers under a single technical administration, using
+      an interior gateway protocol and common metrics to route
+      packets within the AS, and using an exterior gateway
+      protocol to route packets to other ASes.  IANA maintains
+      the AS number space and has delegated large parts to the
+      regional registries.
+
+      Autonomous system numbers were originally limited to 16
+      bits.  BGP extensions have enlarged the autonomous system
+      number space to 32 bits.  This type therefore uses an uint32
+      base type without a range restriction in order to support
+      a larger autonomous system number space.
+
+      In the value set and its semantics, this type is equivalent
+      to the InetAutonomousSystemNumber textual convention of
+      the SMIv2.";
+    reference
+     "RFC 1930: Guidelines for creation, selection, and registration
+                of an Autonomous System (AS)
+      RFC 4271: A Border Gateway Protocol 4 (BGP-4)
+      RFC 4001: Textual Conventions for Internet Network Addresses
+      RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
+                Number Space";
+  }
+
+  /*** collection of types related to IP addresses and hostnames ***/
+
+  typedef ip-address {
+    type union {
+      type inet:ipv4-address;
+      type inet:ipv6-address;
+    }
+    description
+     "The ip-address type represents an IP address and is IP
+      version neutral.  The format of the textual representation
+      implies the IP version.  This type supports scoped addresses
+      by allowing zone identifiers in the address format.";
+    reference
+     "RFC 4007: IPv6 Scoped Address Architecture";
+  }
+
+  typedef ipv4-address {
+    type string {
+      pattern
+        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+      +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+      + '(%[\p{N}\p{L}]+)?';
+    }
+    description
+      "The ipv4-address type represents an IPv4 address in
+       dotted-quad notation.  The IPv4 address may include a zone
+       index, separated by a % sign.
+
+       The zone index is used to disambiguate identical address
+       values.  For link-local addresses, the zone index will
+       typically be the interface index number or the name of an
+       interface.  If the zone index is not present, the default
+       zone of the device will be used.
+
+       The canonical format for the zone index is the numerical
+       format";
+  }
+
+  typedef ipv6-address {
+    type string {
+      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+            + '(%[\p{N}\p{L}]+)?';
+      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+            + '(%.+)?';
+    }
+    description
+     "The ipv6-address type represents an IPv6 address in full,
+      mixed, shortened, and shortened-mixed notation.  The IPv6
+      address may include a zone index, separated by a % sign.
+
+      The zone index is used to disambiguate identical address
+      values.  For link-local addresses, the zone index will
+      typically be the interface index number or the name of an
+      interface.  If the zone index is not present, the default
+      zone of the device will be used.
+
+
+
+      The canonical format of IPv6 addresses uses the textual
+      representation defined in Section 4 of RFC 5952.  The
+      canonical format for the zone index is the numerical
+      format as described in Section 11.2 of RFC 4007.";
+    reference
+     "RFC 4291: IP Version 6 Addressing Architecture
+      RFC 4007: IPv6 Scoped Address Architecture
+      RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  typedef ip-address-no-zone {
+    type union {
+      type inet:ipv4-address-no-zone;
+      type inet:ipv6-address-no-zone;
+    }
+    description
+     "The ip-address-no-zone type represents an IP address and is
+      IP version neutral.  The format of the textual representation
+      implies the IP version.  This type does not support scoped
+      addresses since it does not allow zone identifiers in the
+      address format.";
+    reference
+     "RFC 4007: IPv6 Scoped Address Architecture";
+  }
+
+  typedef ipv4-address-no-zone {
+    type inet:ipv4-address {
+      pattern '[0-9\.]*';
+    }
+    description
+      "An IPv4 address without a zone index.  This type, derived from
+       ipv4-address, may be used in situations where the zone is
+       known from the context and hence no zone index is needed.";
+  }
+
+  typedef ipv6-address-no-zone {
+    type inet:ipv6-address {
+      pattern '[0-9a-fA-F:\.]*';
+    }
+    description
+      "An IPv6 address without a zone index.  This type, derived from
+       ipv6-address, may be used in situations where the zone is
+       known from the context and hence no zone index is needed.";
+    reference
+     "RFC 4291: IP Version 6 Addressing Architecture
+      RFC 4007: IPv6 Scoped Address Architecture
+      RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  typedef ip-prefix {
+    type union {
+      type inet:ipv4-prefix;
+      type inet:ipv6-prefix;
+    }
+    description
+     "The ip-prefix type represents an IP prefix and is IP
+      version neutral.  The format of the textual representations
+      implies the IP version.";
+  }
+
+  typedef ipv4-prefix {
+    type string {
+      pattern
+         '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+       +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+       + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
+    }
+    description
+     "The ipv4-prefix type represents an IPv4 address prefix.
+      The prefix length is given by the number following the
+      slash character and must be less than or equal to 32.
+
+      A prefix length value of n corresponds to an IP address
+      mask that has n contiguous 1-bits from the most
+      significant bit (MSB) and all other bits set to 0.
+
+      The canonical format of an IPv4 prefix has all bits of
+      the IPv4 address set to zero that are not part of the
+      IPv4 prefix.";
+  }
+
+  typedef ipv6-prefix {
+    type string {
+      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+            + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
+      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+            + '(/.+)';
+    }
+
+
+    description
+     "The ipv6-prefix type represents an IPv6 address prefix.
+      The prefix length is given by the number following the
+      slash character and must be less than or equal to 128.
+
+      A prefix length value of n corresponds to an IP address
+      mask that has n contiguous 1-bits from the most
+      significant bit (MSB) and all other bits set to 0.
+
+      The IPv6 address should have all bits that do not belong
+      to the prefix set to zero.
+
+      The canonical format of an IPv6 prefix has all bits of
+      the IPv6 address set to zero that are not part of the
+      IPv6 prefix.  Furthermore, the IPv6 address is represented
+      as defined in Section 4 of RFC 5952.";
+    reference
+     "RFC 5952: A Recommendation for IPv6 Address Text
+                Representation";
+  }
+
+  /*** collection of domain name and URI types ***/
+
+  typedef domain-name {
+    type string {
+      pattern
+        '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
+      + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
+      + '|\.';
+      length "1..253";
+    }
+    description
+     "The domain-name type represents a DNS domain name.  The
+      name SHOULD be fully qualified whenever possible.
+
+      Internet domain names are only loosely specified.  Section
+      3.5 of RFC 1034 recommends a syntax (modified in Section
+      2.1 of RFC 1123).  The pattern above is intended to allow
+      for current practice in domain name use, and some possible
+      future expansion.  It is designed to hold various types of
+      domain names, including names used for A or AAAA records
+      (host names) and other records, such as SRV records.  Note
+      that Internet host names have a stricter syntax (described
+      in RFC 952) than the DNS recommendations in RFCs 1034 and
+      1123, and that systems that want to store host names in
+      schema nodes using the domain-name type are recommended to
+      adhere to this stricter standard to ensure interoperability.
+
+      The encoding of DNS names in the DNS protocol is limited
+      to 255 characters.  Since the encoding consists of labels
+      prefixed by a length bytes and there is a trailing NULL
+      byte, only 253 characters can appear in the textual dotted
+      notation.
+
+      The description clause of schema nodes using the domain-name
+      type MUST describe when and how these names are resolved to
+      IP addresses.  Note that the resolution of a domain-name value
+      may require to query multiple DNS records (e.g., A for IPv4
+      and AAAA for IPv6).  The order of the resolution process and
+      which DNS record takes precedence can either be defined
+      explicitly or may depend on the configuration of the
+      resolver.
+
+      Domain-name values use the US-ASCII encoding.  Their canonical
+      format uses lowercase US-ASCII characters.  Internationalized
+      domain names MUST be A-labels as per RFC 5890.";
+    reference
+     "RFC  952: DoD Internet Host Table Specification
+      RFC 1034: Domain Names - Concepts and Facilities
+      RFC 1123: Requirements for Internet Hosts -- Application
+                and Support
+      RFC 2782: A DNS RR for specifying the location of services
+                (DNS SRV)
+      RFC 5890: Internationalized Domain Names in Applications
+                (IDNA): Definitions and Document Framework";
+  }
+
+  typedef host {
+    type union {
+      type inet:ip-address;
+      type inet:domain-name;
+    }
+    description
+     "The host type represents either an IP address or a DNS
+      domain name.";
+  }
+
+  typedef uri {
+    type string;
+    description
+     "The uri type represents a Uniform Resource Identifier
+      (URI) as defined by STD 66.
+
+      Objects using the uri type MUST be in US-ASCII encoding,
+      and MUST be normalized as described by RFC 3986 Sections
+      6.2.1, 6.2.2.1, and 6.2.2.2.  All unnecessary
+      percent-encoding is removed, and all case-insensitive
+      characters are set to lowercase except for hexadecimal
+      digits, which are normalized to uppercase as described in
+      Section 6.2.2.1.
+
+      The purpose of this normalization is to help provide
+      unique URIs.  Note that this normalization is not
+      sufficient to provide uniqueness.  Two URIs that are
+      textually distinct after this normalization may still be
+      equivalent.
+
+      Objects using the uri type may restrict the schemes that
+      they permit.  For example, 'data:' and 'urn:' schemes
+      might not be appropriate.
+
+      A zero-length URI is not a valid URI.  This can be used to
+      express 'URI absent' where required.
+
+      In the value set and its semantics, this type is equivalent
+      to the Uri SMIv2 textual convention defined in RFC 5017.";
+    reference
+     "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
+      RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
+                Group: Uniform Resource Identifiers (URIs), URLs,
+                and Uniform Resource Names (URNs): Clarifications
+                and Recommendations
+      RFC 5017: MIB Textual Conventions for Uniform Resource
+                Identifiers (URIs)";
+  }
+
+}