
OpenSpeak™ Language Specifications
	Revision
	Date
	Author
	Comments

	1.0
	19 Oct 2012
	C S Sriram
	First draft

41.
Purpose

52.
Introduction

63.
Specifications

6a.
Test Specification keywords

7b.
Component interaction keywords

10c.
Assertion keywords

11d.
Programming keywords

13e.
Conjunction

14f.
Logging

154.
References

1. Purpose
This document lays down the specifications of the OpenSpeak language which will be used for Plain English automation of OpenFlow/SDN topologies using the OFAutomation solution. The document is intended to be a guide for developers, testers and users alike.

This document assumes the reader is familiar with OpenFlow/SDN components and the OFAutomation SRS. Reading this document without knowledge of these two might be detrimental.

2. Introduction

OpenSpeak is a keyword based automation language that is meant to make automating OpenFlow/SDN components easier. The objective of OpenSpeak is to abstract automation details from the automation engineer allowing him/her to focus on only the automation objective. This would mean the automation engineer need not worry about how the framework configures a flow on a switch or starts a topology on mininet and instead focus on the actual testing/automation which is focused towards individual steps of a testcase.
This also ensures that test design and test automation are unified into a single process. Using OpenSpeak, if a QA/automation engineer writes the testcase using these specs, then the automation is complete.

OpenSpeak will also provide dummy connectivity modules that can ensure part of automation can be completed even before the actual product/component is ready.

By these means, OpenSpeak tries to ensure maximum productivity with minimum learning curve.

3. Specifications

The OpenSpeak language comprises the following families of keywords

· Test specification keywords

· Component interaction keywords

· Test assertion keywords

· Programming construct keywords

· Comments and miscellaneous keywords

The complete OpenSpeak specification is the summary of all these keywords. Each of these keywords are detailed below with examples.

a. Test Specification keywords

These are keywords meant to demarcate sections of the test. There are four keywords in this family.

CASE <case_number>

This keyword specifies the beginning of a particular testcase in a script. One script can have multiple testcases. A testcase specification is bounded by EOF or the next testcase specification.

E.g.,

CASE 1

COMMENT “Do something here”

CASE 2

COMMENT “Do something here”

NAME “<Testcase name>”
This keyword gives a name to the keyword. This is for user reference purpose and has no effect on the functionality. This same name will appear in the test report and logs. The script should allow only one name per testcase.

E.g.,

CASE 1

NAME “This is my first testcase“

COMMENT “ Do something here”

STEP “<Step description>”

This keyword demarcates internal sections of a testcase. Each step is a set off granular actions with an assertion present optionally.

E.g.,

CASE 1

NAME “This is attest case with steps”

STEP “The first step”

COMMENT “Do something in the first step”

STEP “The second step”

COMMENT “Do something in the second step”

b. Component interaction keywords
This family of keywords is biggest and most important family of keywords. These keywords permit the user to perform various actions on the components, such as connecting, configuring a flow, etc. The usability and efficiency of these keywords depends upon how descriptive the APIs are defined in the respective component drivers. So, a Controller component driver with an API named cfflows is less desirable than one with an API named config_flows.

Another thing to note here is the names of the components and arguments for them will be provided by the params file. While the user can always provide the arguments for various actions in the script itself, it is desirable to have them pulled out of the params file to make the tests reusable and to separate data and automation flow in the script.

Sample params file

	[PARAMS]

 'testcases' = '[1,2]'

 [[DEVICE]]

 [[["my_mininet"]]]

 'host' = '192.168.56.101'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "Mininet"

 [[[["OPTIONS"]]]]

 # Specify the Option for mininet

 'topo' = 'single'

 'topocount' = '3'

 'switch' = 'ovsk'

 'controller' = 'remote'

 [[["my_controller_2"]]]

 'host' = '192.168.56.101'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = 'POX'

 [[[["OPTIONS"]]]]

 # Specify the Option for mininet

 'log_level' = 'DEBUG'

 'component' = 'samples.of_tutorial'

The keywords are listed below.

CONNECT <component_name> USING
 <arg1> AS <value1>, <arg2> AS <value2>

This keyword is used to initiate connection to a component. While this keyword might never be used explicitly (because all components are connected at test init), it might be needed in cases where a forceful disconnect is performed.

E.g.,

CASE 1

NAME “My first testcase with a connect using hard coded args”

COMMENT “This is bad scripting”

STEP “Connecting to some controller”

CONNECT my_controller USING host AS “10.0.0.1”, port AS 9090, user AS “user”, passwd AS “password”

CASE 1

NAME “My first testcase with a connect using args from params”

#This is good scripting

STEP “Connecting to some mininet emulator”

CONNECT my_mininet USING host AS PARAMS[host], port AS PARAMS[port], user AS PARAMS[user], passwd AS PARAMS[password]

In this example, host will be substituted with the host parameter for my_mininet device in the params file (i.e.,) 192.168.56.101 as referred to the sample file and so on.
DISCONNECT <component_name>

This keyword is used to terminate connection to a component. While this keyword might never be used explicitly (because all components are disconnected at test cleanup), it might be needed in cases where a forceful disconnect must be performed.

E.g.,

CASE 1

NAME “My first testcase with a connect and disconnect”

STEP “Connecting to some controller”

CONNECT my_mininet USING host AS PARAMS[host], port AS PARAMS[port], user AS PARAMS[user], passwd AS PARAMS[password]

STEP “Now let’s disconnect”

DISCONNECT my_mininet

ON <component> DO <action> USING <arg1> AS <value1><arg2> AS <value2>

This is the single most important keyword in this entire family. It is the atomic part of most test steps and will be oft used. Understanding this keyword’s construct requires a bit of understanding of the component driver design
.

The reason for specifying the ON keyword before the DO keyword is to ensure easier live help for the UI at a later phase.

E.g.,

CASE1

NAME “A testcase that performs something on a component”

STEP “Configure flows on FlowVisor”

ON flowvisor1 DO configure_actions USING flow AS STEP[flow_config]

c. Assertion keywords

The assertion family of keywords are key to the test framework since they determine the result of a testcase. The keyword format is,

ASSERT <value1> <COMPARISON OPERATOR> <value2>

The comparison operators will be a set of sub keywords or abbreviated symbols either of which can be used as per the user’s preference. They are listed below with the abbreviations in brackets.

· EQUALS (==)
· GREATER THAN (>)

· LESSER THAN (<)

· GREATER THAN OR EQUALS (>=)

· LESSER THAN OR EQUALS (<=)
· MATCHES (~)

· NOT (!)

Assertion also accepts a few default variables/cases. The following is a list of them.
· LAST_RESULT – Result of the last API called/action performed on a component
· LAST_RESPONSE – Response of the last exec (atomic action) performed on any component.
· Any CASE/STEP/TOPOLOGY params substitution
· The defined constants main.TRUE, main.FALSE and main.ERROR which translate to the integers 1, 0 and -1 respectively
E.g.,

CASE1

NAME “Let’s assert ourselves“

STEP “A simple assert”

ASSERT 1 EQUALS main.TRUE

STEP “Let’s try not to assert ourselves”

ASSERT 1 NOT EQUALS main.FALSE

STEP “Assertion with substitution and abbreviation for comparison operator”

ON mininet1 DO pingall

ASSERT LAST_RESPONSE ~ “10 packets sent, 10 packets received”
d. Programming keywords

The programming set of keywords is meant to provide a bridge between a user who is shy of programming and a user who is into extreme programming. It gives a limited ability to do hardcore programming inside the script with the ease of use of OpenSpeak.

There are totally 5 sets of keywords in this family.

STORE <variable> IN <value> or <variable> = <value>

This is a simple construct meant to create variables on the fly in the script. The user can use the long form for better readability or stick to the abbreviated operator for easier authoring.

The keyword is powerful because it does not require that value be a constant like a string or an integer, but also an action in OpenSpeak. This allows assignment and action in a single statement.

E.g.,

CASE1

NAME “Let’s assign some things”

STEP “Simple assignment”

variable1 = “shorthand”

STEP “Another simple assignment”

STORE “longhand” IN variable2

STEP “A complex assignment”

Variable3 = ON host2 DO ifconfig

STEP “A complex verbose assignment”

ON host3 DO ifconfig AND STORE IN variable4
IF <condition>/ELSE IF <condition>/ELSE

This is a simple comparison construct. The condition clauses will follow the same rules as in the assertion keyword. Each IF/ELSE must be separated by a new line.

E.g.,

CASE1

NAME “Conditions Apply”

IF variable1 == “shorthand”

INFO “You are lazy and smart”

ELSE IF variable2 EQUALS “longhand”

INFO “You are hardworking”

ELSE

INFO “You are hardly working”

REPEAT <n> TIMES/END
Loops can be made using this simple construct. This construct also makes the special variable INDEX available inside the loop to find the current iteration count.

E.g.,

CASE1

NAME “A little loopy testcase”

REPEAT 5 TIMES

INFO “Looped the hoop ”+INDEX+” times”

END

COMMENT

A simple one line construct. Anything written in this line will be ignored in execution.

E.g.,

CASE1

NAME “Live commentary”

STEP “The first step”

COMMENT I am in the first step

#Of course I can be abbreviated too!
e. Conjunction
This is a special single keyword (AND) that allows combining multiple OpenSpeak statements in a single statement in specific cases.

Following are the statements that can be combined.

· Any operation and an ASSERT

· Any operations and a STORE

E.g.,

CASE1

NAME “Conjunction”

STEP “Let’s do something and assert ourselves”

ON flowvisor1 DO get_slice USING flowvisor1.slice_config AND ASSERT LAST_RESULT == main.TRUE

STEP “Let’s do something and store it for a rainy day”

ON mininet1 DO start_emulation AND STORE LAST_RESPONSE IN emulation_response

COMMENT “Conjunction and abbreviation don’t go together”

f. Logging

Logging is done by means of simply providing the level of the message in caps followed by the message itself.

E.g.,

CASE1

NAME “Lots of logs”

STEP “All good”

INFO “Nothing to worry”

STEP “A little deeper”

DEBUG “You can dump an object at this level”

STEP “Something is rotten in the state of Denmark”

WARN “You better keep a close eye on me”

STEP “Not looking good”

ERROR “Houston we have a problem ” + mininet1.error

STEP “KABOOM”

CRITICAL “End of the road”

4. References
· OFAutomation SRS v1.0 by C S Sriram

�The phrase “USING AS” will be used with a lot of keywords. It is used to specify arguments to an action and replaces the traditional parenthesis in a scripting language. There will be an option for the automation engineer to use the parenthesis instead, but this is not encouraged as it reduces readability.

 E.g., CONNECT my_controller USING host AS ‘localhost,’ port AS 9090 is more readable than CONNECT my_controller (host : ‘localhost’, port : ‘9090’)

�Component drivers are designed with layers of abstracted and concrete classes as shown below.

Component (Abstract)

		CLI (Abstract)

			Emulator (Abstract)

				Mininet (Concrete)

In this structure, the abstract classes have definitions or templates for atomic operations possible on the controller. For example, the Component class will have a template for the action exec which execs a command (or an API call or a UI operation based on the component), waits for an expected prompt (or a return value or a UI sequence) and returns if the expected result was achieved. This exec action is defined at the CLI/API/UI abstract classes.

At the next level, the abstract class Emulator lays down the template for a higher order action like pingall or show_nodes which is a series of the atomic exec action. E.g., The pingall command will be a exec of the pingall command followed by a regex match to check if the packet counts match. This template is defined at the concrete class Mininet. Thus, any number of actions can be layered and abstracted easily. At a later phase, once the core abstract classes are defined, it should be possible to define component drivers in OpenSpeak as well. The specification for the same is outside the scope of this document.

� The NOT keyword is a modifier. It negates the comparison operator that follows it. When used without any comparison operator, it assumes NOT EQUALS.

© All rights reserved 2011
Page 1 of 17
[image: image1.png]

[image: image1.png]