OFAutomation
The complete open automation solution for OpenFlow and SDN
Table of Contents
1OFAutomation

2Table of Contents

3Revision History

41.
Introduction

4a.
Purpose

4b.
Project Scope

4c.
Audience

52.
Overall Description

5a.
Product Perspective

7b.
Product Features

7c.
User Classes

7d.
Operating Environment

8e.
Design constraints

8f.
User Documentation

93.
Requirement Specifications

9a.
Core Connectivity

10b.
OpenSpeak Authoring

13c.
Parameterization

15d.
Test Handling

19e.
Logging and debugging

204.
Appendix

20a.
OpenSpeak Specification

215.
References

Revision History

	Author
	Revision
	Date
	Comments

	C S Sriram
	1.0
	19, October 2012
	First draft

1. Introduction

a. Purpose

OFAutomation is a proposed end to end automation solution for automating tests run across various components in an OpenFlow topology. This solution aims to provide an automation framework, that is not just exhaustive in coverage, but also makes it easy to debug and author scripts. This SRS lays down the requirements for the first phase of this solution.

b. Project Scope

OFAutomation’s first phase is focused towards getting a robust automation framework that allows for authoring scripts in plain English and can be run standalone from the command line. So, UI requirements, test monitoring requirements, scheduling requirements, etc will not be discussed in this document. Further, the document assumes the user has a certain level of familiarity with OpenFlow and SDN concepts.
c. Audience

The intended audience for this document includes,

· Developers – in order to ensure their implementation complies with the requirements specified herein

· Researchers – in order to better understand the implementation of the framework and enhance it architecturally.

· Testers – in order to ensure their verification complies with the requirements specified herein

· Documentation writers – in order to understand the features and the details of how each one works

· Advanced users – in order to understand how the system works and provide inputs

2. Overall Description
a. Product Perspective

OFAutomation is a solution that aims to interact with and automate all components in the OpenFlow/SDN network.
The core ideas driving this solution are,

· Easy usage – User must be able to quickly automate, execute and debug testcases. Further, since SDN/OpenFlow is a highly experimental project, user must be able to automate partial testcases easily even when the product under test itself is incomplete.

· Abstracted design – User must only be concerned with automation and testing. User should not worry over details such as how to connect to a particular component or how to pass a variable across the automation module, etc.
· Extensibility – OFAutomation is a growing framework as is OpenFlow/SDN. So, the solution must have the ability to add more features and support new components. To this end, the solution must support a “plug and play” architecture on various levels.
For reference purposes, the components of a typical OpenFlow/SDN topology are given below.
[image: image1.png]
In order to interact with these components and to provide a useful automation framework, OFAutomation needs the following components as part of the solution.

[image: image2]

The functions of each are listed below.

· Test Handler – Manages authoring, parsing and execution of the test. Sub components are

· Test/Topology parser – Module that parses the test from plain English and topology from a specification file and prepares for execution.

· Test sequencer – Module that executes the tests case by case, step by step adding ability for step by step pause and debug later.

· Object loader – Module that connects and loads all the device connection objects for access in the test

· Component Drivers – Connects and provides interfaces to various components in the OpenFlow/SDN topology.

· Logger – Module that continuously logs and reports all actions of the test.

b. Product Features

The OFAutomation solution will provide following features as part of its first phase.
· Core Connectivity – Layered interfaces that provide connectivity to various components in the OpenFlow/SDN topology

· OpenSpeak Plain English Automation – Interpreter that translates Plain English scripts into OFAutomation tests. The Plain English scripts will be written in OpenSpeak, a language spec that is part of OFAutomation. (See Appendix for the language specification).

· Parametrization – Ability to specify various test and topology parameters in a simple specification file.

· Test handling – Ability to author granular testcases with detailed steps and specify the topology in a simple specification file

· Logging and debugging – Ability to know what the test does in a segregated and detailed fashion and also obtain a high level uncluttered summary of the results

c. User Classes

The user classes listed below are notional. There will be no access control in the first phase of OFAutomation.
· Driver Author – Users who write connectivity interfaces for various components in the OpenFlow/SDN topology
· Script Author – Users who write test scripts for execution.

· End user – Users who execute the above scripts, analyze them and debug the results
d. Operating Environment
The initial version of OFAutomation is to be written in Python to support connectivity to various components. So, the solution is expected to run seamlessly on any Linux OS distribution.

For Windows OS distributions, this phase is supposed to work using CygWin as an intermediate solution. However, this is a temporary arrangement and the solution should migrate towards using WinPExpect or similar modules to run without the installation of CygWin.

e. Design constraints

OFAutomation will be implemented in phases. So the primary design constraint is the ability to expand. All components, modules must be designed to meet bigger goals later on with clearly defined APIs and documentation.

Further, the solution is to be designed using the Python programming language. Justifications for this constraint are,

· Python is a strong scripting language and is proven for automation solutions.

· Python provides strong support for RPC with other languages which will be required to interact with various OpenFlow/SDN components

· There are multiple OpenFlow/SDN components that use Python as their base.

f. User Documentation

OFAutomation must provide the following documentation as part of the end solution.

· In-built Pydoc for all modules and classes

· Detailed API guide

· Detailed user guide in PDF form

3. Requirement Specifications

a. Core Connectivity
Connectivity in OFAutomation refers to an interface that provides following functionality on a component of the OpenFlow/SDN topology.

· Seamless connection – Connect to all components in the test topology at start of test and retain connection till end. Reconnect if there is a connection failure.

· Sophisticated interfaces – Interfaces that allow user the ability to do high level functions (like configuring a flow on a switch, ping a remote host, etc) using simple scripting.

· Layered interfaces – Interfaces that are designed to abstract and box functionality of various components in cleanly defined layers.

Use cases

Case 1:

User authors a script which connects to a single component and pings a remote host.

User executes the above script.

The script connects to the component and creates a handle that the user can use in the script automatically.

The test executes and user receives the results.

Case 2:

User authors a script which connects to multiple components and performs various actions on the components.

User executes the above script.

The script connects to all components and creates handles for each of them that the user can use in the script automatically.

The test executes and user receives the results.

Case 3:

User authors a script which connects to multiple components and performs various actions on the components.

User executes the above script.

One of the components reboots in the middle of execution.

The test identifies disconnection after executing current step and reconnects to that component before proceeding with next step.

b. OpenSpeak Authoring
OpenSpeak is a keyword driven language specification for OFAutomation. The goal of this language is to allow the QA/automation engineer to automate testcases rapidly without worrying about the internals of the framework. The specification must be generic enough to extend and support any new component, component type or testing that OpenFlow/SDN might add later.
OFAutomation must employ an automatic compiler that gets called when a test is executed using the framework which determines if the test script is in Python or OpenSpeak format. If the format is OpenSpeak, then a translation to Python must be done prior to execution. The implementation of the compiler must adhere to the specification attached in the appendix.

OpenSpeak compiler must also have provisions for syntax verification and interpreter mode, allowing user to translate just one line. Further, there must also be a provision/utility for just translation without execution of the test itself.

Further, OpenSpeak must support an experimental mode where user can author testcases for components that do not have a complete set of APIs available. In this mode, if the API is not available, OpenSpeak must proceed with the API echoing a pre-set return value passed to the API.

Use cases

Case 1:

User has to automate a testcase that tests FlowVisor functionality using cpTester and dpTester.

User prepares a topology with single FlowVisor, multiple switches and controllers as per the topology specification under Parameterization section. This topology has following components.
· testflowvisor

· switch1

· switch2

· controller1

· controller2

· dptestinstance

· cptestinstance
User writes below testcase in OpenSpeak.

CASE 1

NAME “Basic FlowVisor test”

STEP “Configure rules in FlowVisor”

ON testflowvisor DO configure_rules USING PARAMS[testflowvisor][rules]

STEP “Verify flows in controllers and switches”

ON controller1 DO verify_flows AND ASSERT

ON controller2 DO verify_flows AND ASSERT

ON switch1 DO verify_flows AND ASSERT

ON switch2 DO verify_flows AND ASSERT

STEP “Verify packets using dpTester and cpTester”

ON dptestinstance DO capture_and_analyze AND ASSERT

ON cptestinstance DO capture_and_analyze AND ASSERT
This testcase is translated into Python as shown below (exact translation might change later. This is for notional purposes) before execution.

def CASE1:

main.test_name(“Basic FlowVisor test”)

main.step(“Configure rules in FlowVisor”)

main.testflowvisor.configure_rules(main.params.testflowvisor.rules)

main.step(“Verify flows in controllers and switches”)

result = main.controller1.verify_flows()

assert(result, main.TRUE)

result = main.controller2.verify_flows()

assert(result, main.TRUE)

result = main.switch1.verify_flows()

assert(result, main.TRUE)

result = main.switch2.verify_flows()

assert(result, main.TRUE)

main.step(“Verify packets using dpTester and cpTester”)

result = main.dptestinstance.capture_and_analyze()

assert(result, main.TRUE)

result = main.cptestinstance.capture_and_analyze()

assert(result, main.TRUE)
In this code, configure_rules, verify_flows, etc are APIs defined in the appropriate component drivers. The standard of defining and deriving these APIs from base classes is explained in detail in OpenSpeak specification.

Case 2:

User has to automate a testcase that tests FlowVisor functionality using cpTester and dpTester.

User prepares the same topology as listed in previous case.
User has not yet written the APIs for verify_flows for the controllers as the controllers of a new type.

User authors the below testcase in OpenSpeak.

CASE 1

EXPERIMENTAL MODE ON

NAME “Basic FlowVisor test”

STEP “Configure rules in FlowVisor”

ON testflowvisor DO configure_rules USING PARAMS[testflowvisor][rules]

STEP “Verify flows in controllers and switches”

ON controller1 DO verify_flows AND ASSERT

ON controller2 DO verify_flows AND ASSERT

ON switch1 DO verify_flows AND ASSERT

ON switch2 DO verify_flows AND ASSERT

STEP “Verify packets using dpTester and cpTester”

ON dptestinstance DO capture_and_analyze AND ASSERT

ON cptestinstance DO capture_and_analyze AND ASSERT
This testcase is translated into Python as shown below (exact translation might change later. This is for notional purposes) before execution.

def CASE1:

main.EXPERIMENTAL_MODE = main.TRUE

main.test_name(““Basic FlowVisor test”)

main.step(“Configure rules in FlowVisor”)

main.testflowvisor.configure_rules(main.params.testflowvisor.rules)

main.step(“Verify flows in controllers and switches”)

result = main.controller1.verify_flows(main.TRUE)

assert(result, main.TRUE)

result = main.controller2.verify_flows(main.TRUE)

assert(result, main.TRUE)

result = main.switch1.verify_flows()

assert(result, main.TRUE)

result = main.switch2.verify_flows()

assert(result, main.TRUE)

main.step(“Verify packets using dpTester and cpTester”)

result = main.dptestinstance.capture_and_analyze()

assert(result, main.TRUE)

result = main.cptestinstance.capture_and_analyze()

assert(result, main.TRUE)
User executes this test via OFAutomation.
When executing step “Verify flows in controllers and switches”, the test handler sees that the API verify_flows is not defined for the controllers. The test handler returns the value TRUE for this API by generating the API on the fly so that user can author and automate test before preparing the API.
c. Parameterization

Parameterization is offered to the user by two means.

· Test parameterization

· Topology parameterization

Test parameterization refers to the test parameters like test cases to be executed, arguments for a particular step, mail id for notification, etc. Topology parameterization specifies the components and their relationship in the test.

These parameters must be accessible with OpenSpeak via the standard format PARAMS[attribute]. It is possible to have nested parameters such as PARAMS[attribute][child].

Test parameters must provide for arguments at each case and step level. These parameters will be available with OpenSpeak in the formats listed below.

· CASE[attribute] – This provides the argument referred by parameter <attribute> for the current CASE being executed

· STEP[attribute] – This provides the argument referred by parameter <attribute> for the current STEP being executed
· CASE<n>[attribute] – This provides the argument referred by parameter <attribute> for the CASE number <n>

· STEP<n>[attribute] – This provides the argument referred by parameter <attribute> for the STEP number <n>
Parameters specified under a particular component in the topology must be available under that component’s object. E.g., If Mininet1 component has a parameter identified by attribute number_of_hosts, the same must be available as Mininet1.number_of_hosts
Use cases

Case 1
User requires a testcase involving 4 components – 1 controller, 1 switch and 2 hosts. The controller is a POX controller.

User authors the following topology file.

#File : testTopology.topo

[TOPOLOGY]

 [[DEVICE]]

 [[["controller1"]]]

 'host' = '192.168.56.101'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "POX"

 [[[["OPTIONS"]]]]

 # Specify the Option for controller

 'attribute1' = 'value1'

 'attribute2' = 'value2'
 [[["switch1"]]]

 'host' = '192.168.56.102'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "pronto"

 [[[["OPTIONS"]]]]

 # Specify the Option for switch

 'attribute1' = 'value1'

 'attribute2' = 'value2'

 [[["host1"]]]

 'host' = '192.168.56.103'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "linux"

 [[[["OPTIONS"]]]]

 # Specify the Option for host1

 'attribute1' = 'value1'

 'attribute2' = 'value2'

 [[["host2"]]]

 'host' = '192.168.56.142'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "linux"

 [[[["OPTIONS"]]]]

 # Specify the Option for host2

 'attribute1' = 'value1'

 'attribute2' = 'value2'

Case 2

User has to use this topology file and run a script which has 10 testcases. Out of these user wants to run testcases 1-5 and testcase 8. The results of the test must be notified to user@domain.com and log files created under /home/user/Desktop/openflow_logs/. Also, for step 1 in testcase 3, user wants to use a parameter specified by the attribute count which will be used at run time.

User authors the following params file.

#File : testParams.params

[PARAMS]

 'testcases' = '[1-5], 8'

 ‘mail’ = ‘user@domain.com’

 ‘log_dir’ = ‘/home/user/Desktop/openflow_logs/’
 [[CASE 3]]

 [[[STEP 1]]]

 ‘count’ = ‘10’

Case 3

User wants to write step1, testcase 3 for this test using this topology and params file which will refer to the parameter defined in params file for that step and run a ping for host1 to host2.

User authors this section of the script.

CASE3

STEP “Use case for parameterization“

ON host1 DO ping USING target=host2, count=STEP[count]

User executes the above script. The framework determines user is referring to the current step parameter when it encounters step 1 of case 3 and substitutes the value with 10 executing a ping from host 1 to host2 with 10 packet count.
d. Test Handling

Test handling refers to the execution, monitor and control of test scripts. For this purpose, the OFAutomation solution must have an interactive CLI shell. The shell must assume a standard installation reference path from which all libraries, tests, topologies, params and log files can be loaded, This path must be configurable via a system level .cfg or .ini file.

This shell must support following functions,

· Test translation – translate tests from OpenSpeak to Python

· Test validation – validate params, topology and test script files

· Test execution and control – Execute tests, pause them and print dump of test states

Out of these, the first two functions are self-explanatory. Test execution should allow user to execute a test script, while selecting various options such as testcases to execute, email to notify, etc., from the shell itself. This execution must always run the INIT and CLEANUP sections of the test irrespective of the testcases selected.

Also, execution must provide the option to pause a test after the current test step. When the test has been paused, control should return to the CLI shell allowing the user to try out following debug commands to check the test state.

· current_case – Print current case number

· current_step – Print current step number

· last_command [<component_name>] – Print last ran command on component name provided. If no component name is provided, then the last ran command of the test will be displayed

· last_response [<component_name>] – Print response of last ran command on component name provided. If no component name is provided, then the response of last ran command of the test will be displayed

· main_object_dump – Print complete dump of the main test object
· object_dump <component> - Print complete dump of provided component object

· params_dump – Dump the test params for the test under execution

· topo_dump – Dump the topology for the test under execution

· do <OpenSpeak phrase> or <Valid OFAutomation Python code> - Execute the provided OpenSpeak phrase or a valid OFAutomation Python code and dump the result

The shell must also provide basic help in a manner similar to CISCO IOS or Unix shell help.

Use cases:

Case 1

User opens the OFAutomation shell.

OFAutomation>

User is unsure of what to do. User types help on the shell.

OFAutomation>help
User gets a list of all commands available.
OFAutomation>help

Commands available

run <script_name> [testcases <testcases to run> log_folder <log folder location with complete path> email <mail id to notify> experimental 1|0]

<OpenSpeak phrase> or <Valid OFAutomation Python code>

echo <some string to echo>

compile < file <OpenSpeak file with complete path> or script <OpenSpeak script name*> >

* - Script must be located in tests dir

interpret <single valid OpenSpeak phrase>

help – Shows this list

Case 2

User opens the OFAutomation shell.

User wishes to execute first 5 test cases in the test script myFirstTest and get results notified to user@abc.com
User runs command for that.

OFautomation>run myFirstTest testcases 1-5 email user@abc.com
The test runs successfully and results updated to the user.

Case 3

User opens the OFAutomation shell.

User wishes to execute first 5 test cases in the test script myFirstTest and get results notified to user@abc.com
User runs command for that.

OFautomation>run myFirstTest testcases 1-5 email user@abc.com
At step 3 of test case 2, user sees something going wrong and wishes to debug more. User sends CTRL-C combination. The test pauses after executing current step and returns to shell.

You paused test execution. Do you wish to [a] abort the test, [b] return to shell to debug, [c] continue execution? b
Test execution is paused and control returned to shell. Please type continue to continue test execution.
OFautomation>
User wishes to see last run command on component myHost.

OFautomation>last_command myHost

Last command run on component myHost is

ifconfig –a

The command returned expected prompt successfully
User wishes to run a ping from component myHost to component myHost2

OFautomation>ON myHost DO ping USING target = myHost2

[01-01-2012 00:00:00][shell][myHost1][ping]Trying to ping address myHost2

[01-01-2012 00:00:00][shell][myHost1][ping]Ping successful

User sees that the issue was caused due to a timing error and should be resolved now and decides to run the rest of the test.

OFautomation>continue

Test execution continues.

Case 4

User opens the OFAutomation shell.

User wishes to execute first 5 test cases in the test script myFirstTest and get results notified to user@abc.com
User runs command for that.

OFautomation>run myFirstTest testcases 1-5 email user@abc.com
At step 3 of test case 2, user decides to abort execution. User sends CTRL-C and then aborts the test.

You paused test execution. Do you wish to [a] abort the test, [b] return to shell to debug, [c] continue execution? c

Test execution has been aborted.
OFautomation>

Test execution aborts and user is sent a report with summary of results till the point of aborting.
e. Logging and debugging

OFAutomation must continuously log all activities of a test for future reference and debugging. The logs generated by the framework should be placed by default under a folder with naming convention shown below.

<script_name>_<PID>_<timestamp in the format DD_MM_YYYY_HH_MM_SS>/

Under this folder, following files/subfolders must be created.

· <script_name>.log – Detailed, verbose log of everything that the script does

· <script_name>.rpt – Summary report of testcase results

· <component_name>/ - Folder containing all component logs

· <component_name>.SESSION – Log of all commands/APIs run on this component with response

· <component_name>_snapshots – Folder containing snapshots of component at various stages as requested by user

· <component_name>_<timestamp>.snap – File containing config details of component at given time

All files must have a header and footer section that marks the beginning and end of the file. This must specify info listed below.

· Header

· File name and path

· Script name

· Time of file creation

· Dump of params and topology used for this test

· Footer

· Summary of test results

· Test execution time

The log file must have log messages in the below format.

For messages log from the main test object

[timestamp][<level>][<class or object or module>][<method>] <message>
For messages log from a component object

[timestamp][<level>][<component type>][<component name>][<method>] <message>

We will later on provide the option to search and filter these files from a UI and the above mentioned test handling CLI as well.

Use cases

NA
4. Appendix

a. OpenSpeak Specification

[image: image3.emf]OpenSpeak

Specs.docx

References

· OpenFlow tutorial shared by William Snow, 10, Aug 2012 http://www.openflow.org/wk/index.php/OpenFlow_Tutorial
· FlowVisor Testplan shared by Masoyashi Kobayashi, 20, Oct 2012

[image: image4.emf]FV-test-plan.ppt

Component Drivers

Logger

Test Handler

OFAutomation

© All rights reserved 2011
Page 21 of 21
[image: image5.png]

[image: image5.png]_1412452977/OpenSpeak Specs.docx

OpenSpeak™ Language Specifications

		Revision

		Date

		Author

		Comments

		1.0

		19 Oct 2012

		C S Sriram

		First draft

1.	Purpose	4

2.	Introduction	5

3.	Specifications	6

a.	Test Specification keywords	6

b.	Component interaction keywords	7

c.	Assertion keywords	10

d.	Programming keywords	11

e.	Conjunction	13

f.	Logging	14

4.	References	15

1. [bookmark: _Toc338710919]Purpose

This document lays down the specifications of the OpenSpeak language which will be used for Plain English automation of OpenFlow/SDN topologies using the OFAutomation solution. The document is intended to be a guide for developers, testers and users alike.

This document assumes the reader is familiar with OpenFlow/SDN components and the OFAutomation SRS. Reading this document without knowledge of these two might be detrimental.

2. [bookmark: _Toc338710920]Introduction

OpenSpeak is a keyword based automation language that is meant to make automating OpenFlow/SDN components easier. The objective of OpenSpeak is to abstract automation details from the automation engineer allowing him/her to focus on only the automation objective. This would mean the automation engineer need not worry about how the framework configures a flow on a switch or starts a topology on mininet and instead focus on the actual testing/automation which is focused towards individual steps of a testcase.

This also ensures that test design and test automation are unified into a single process. Using OpenSpeak, if a QA/automation engineer writes the testcase using these specs, then the automation is complete.

OpenSpeak will also provide dummy connectivity modules that can ensure part of automation can be completed even before the actual product/component is ready.

By these means, OpenSpeak tries to ensure maximum productivity with minimum learning curve.

3. [bookmark: _Toc338710921]Specifications

The OpenSpeak language comprises the following families of keywords

· Test specification keywords

· Component interaction keywords

· Test assertion keywords

· Programming construct keywords

· Comments and miscellaneous keywords

The complete OpenSpeak specification is the summary of all these keywords. Each of these keywords are detailed below with examples.

a. [bookmark: _Toc338710922]Test Specification keywords

These are keywords meant to demarcate sections of the test. There are four keywords in this family.

CASE <case_number>

	This keyword specifies the beginning of a particular testcase in a script. One script can have multiple testcases. A testcase specification is bounded by EOF or the next testcase specification.

E.g.,

CASE 1

	COMMENT “Do something here”

CASE 2

	COMMENT “Do something here”

NAME “<Testcase name>”

This keyword gives a name to the keyword. This is for user reference purpose and has no effect on the functionality. This same name will appear in the test report and logs. The script should allow only one name per testcase.

		E.g.,

			CASE 1

				NAME “This is my first testcase“

				COMMENT “ Do something here”

STEP “<Step description>”

	This keyword demarcates internal sections of a testcase. Each step is a set off granular actions with an assertion present optionally.

E.g.,

	CASE 1

		NAME “This is attest case with steps”

		STEP “The first step”

		COMMENT “Do something in the first step”

		STEP “The second step”

		COMMENT “Do something in the second step”

b. [bookmark: _Toc338710923]Component interaction keywords

This family of keywords is biggest and most important family of keywords. These keywords permit the user to perform various actions on the components, such as connecting, configuring a flow, etc. The usability and efficiency of these keywords depends upon how descriptive the APIs are defined in the respective component drivers. So, a Controller component driver with an API named cfflows is less desirable than one with an API named config_flows.

Another thing to note here is the names of the components and arguments for them will be provided by the params file. While the user can always provide the arguments for various actions in the script itself, it is desirable to have them pulled out of the params file to make the tests reusable and to separate data and automation flow in the script.

Sample params file

		[PARAMS]

 'testcases' = '[1,2]'

 [[DEVICE]]

 [[["my_mininet"]]]

 'host' = '192.168.56.101'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = "Mininet"

 [[[["OPTIONS"]]]]

 # Specify the Option for mininet

 'topo' = 'single'

 'topocount' = '3'

 'switch' = 'ovsk'

 'controller' = 'remote'

 [[["my_controller_2"]]]

 'host' = '192.168.56.101'

 'user' = 'openflow'

 'password' = 'openflow'

 'type' = 'POX'

 [[[["OPTIONS"]]]]

 # Specify the Option for mininet

 'log_level' = 'DEBUG'

 'component' = 'samples.of_tutorial'

The keywords are listed below.

CONNECT <component_name> USING[footnoteRef:2] <arg1> AS <value1>, <arg2> AS <value2> [2: The phrase “USING AS” will be used with a lot of keywords. It is used to specify arguments to an action and replaces the traditional parenthesis in a scripting language. There will be an option for the automation engineer to use the parenthesis instead, but this is not encouraged as it reduces readability.
 E.g., CONNECT my_controller USING host AS ‘localhost,’ port AS 9090 is more readable than CONNECT my_controller (host : ‘localhost’, port : ‘9090’)]

	This keyword is used to initiate connection to a component. While this keyword might never be used explicitly (because all components are connected at test init), it might be needed in cases where a forceful disconnect is performed.

E.g.,

	CASE 1

		NAME “My first testcase with a connect using hard coded args”

		COMMENT “This is bad scripting”

		STEP “Connecting to some controller”

		CONNECT my_controller USING host AS “10.0.0.1”, port AS 9090, user AS “user”, passwd AS “password”

	CASE 1

		NAME “My first testcase with a connect using args from params”

		#This is good scripting

		STEP “Connecting to some mininet emulator”

		CONNECT my_mininet USING host AS PARAMS[host], port AS PARAMS[port], user AS PARAMS[user], passwd AS PARAMS[password]

		In this example, host will be substituted with the host parameter for my_mininet device in the params file (i.e.,) 192.168.56.101 as referred to the sample file and so on.

DISCONNECT <component_name>

	This keyword is used to terminate connection to a component. While this keyword might never be used explicitly (because all components are disconnected at test cleanup), it might be needed in cases where a forceful disconnect must be performed.

E.g.,

	CASE 1

		NAME “My first testcase with a connect and disconnect”

		STEP “Connecting to some controller”

		CONNECT my_mininet USING host AS PARAMS[host], port AS PARAMS[port], user AS PARAMS[user], passwd AS PARAMS[password]

		STEP “Now let’s disconnect”

		DISCONNECT my_mininet

ON <component> DO <action> USING <arg1> AS <value1><arg2> AS <value2>

	This is the single most important keyword in this entire family. It is the atomic part of most test steps and will be oft used. Understanding this keyword’s construct requires a bit of understanding of the component driver design[footnoteRef:3]. [3: Component drivers are designed with layers of abstracted and concrete classes as shown below.
Component (Abstract)
		CLI (Abstract)
			Emulator (Abstract)
				Mininet (Concrete)
In this structure, the abstract classes have definitions or templates for atomic operations possible on the controller. For example, the Component class will have a template for the action exec which execs a command (or an API call or a UI operation based on the component), waits for an expected prompt (or a return value or a UI sequence) and returns if the expected result was achieved. This exec action is defined at the CLI/API/UI abstract classes.
At the next level, the abstract class Emulator lays down the template for a higher order action like pingall or show_nodes which is a series of the atomic exec action. E.g., The pingall command will be a exec of the pingall command followed by a regex match to check if the packet counts match. This template is defined at the concrete class Mininet. Thus, any number of actions can be layered and abstracted easily. At a later phase, once the core abstract classes are defined, it should be possible to define component drivers in OpenSpeak as well. The specification for the same is outside the scope of this document.
]

	The reason for specifying the ON keyword before the DO keyword is to ensure easier live help for the UI at a later phase.

E.g.,

	CASE1

		NAME “A testcase that performs something on a component”

		STEP “Configure flows on FlowVisor”

		ON flowvisor1 DO configure_actions USING flow AS STEP[flow_config]

c. [bookmark: _Toc338710924]Assertion keywords

The assertion family of keywords are key to the test framework since they determine the result of a testcase. The keyword format is,

ASSERT <value1> <COMPARISON OPERATOR> <value2>

The comparison operators will be a set of sub keywords or abbreviated symbols either of which can be used as per the user’s preference. They are listed below with the abbreviations in brackets.

· EQUALS (==)

· GREATER THAN (>)

· LESSER THAN (<)

· GREATER THAN OR EQUALS (>=)

· LESSER THAN OR EQUALS (<=)

· MATCHES (~)

· NOT (!)[footnoteRef:4] [4: The NOT keyword is a modifier. It negates the comparison operator that follows it. When used without any comparison operator, it assumes NOT EQUALS.]

Assertion also accepts a few default variables/cases. The following is a list of them.

· LAST_RESULT – Result of the last API called/action performed on a component

· LAST_RESPONSE – Response of the last exec (atomic action) performed on any component.

· Any CASE/STEP/TOPOLOGY params substitution

· The defined constants main.TRUE, main.FALSE and main.ERROR which translate to the integers 1, 0 and -1 respectively

E.g.,

	CASE1

		NAME “Let’s assert ourselves“

		STEP “A simple assert”

		ASSERT 1 EQUALS main.TRUE

		STEP “Let’s try not to assert ourselves”

		ASSERT 1 NOT EQUALS main.FALSE

		STEP “Assertion with substitution and abbreviation for comparison operator”

		ON mininet1 DO pingall

		ASSERT LAST_RESPONSE ~ “10 packets sent, 10 packets received”

d. [bookmark: _Toc338710925]Programming keywords

The programming set of keywords is meant to provide a bridge between a user who is shy of programming and a user who is into extreme programming. It gives a limited ability to do hardcore programming inside the script with the ease of use of OpenSpeak.

There are totally 5 sets of keywords in this family.

STORE <variable> IN <value> or <variable> = <value>

This is a simple construct meant to create variables on the fly in the script. The user can use the long form for better readability or stick to the abbreviated operator for easier authoring.

The keyword is powerful because it does not require that value be a constant like a string or an integer, but also an action in OpenSpeak. This allows assignment and action in a single statement.

E.g.,

	CASE1

		NAME “Let’s assign some things”

		STEP “Simple assignment”

		variable1 = “shorthand”

		STEP “Another simple assignment”

		STORE “longhand” IN variable2

		STEP “A complex assignment”

		Variable3 = ON host2 DO ifconfig

		STEP “A complex verbose assignment”

		ON host3 DO ifconfig AND STORE IN variable4

IF <condition>/ELSE IF <condition>/ELSE

This is a simple comparison construct. The condition clauses will follow the same rules as in the assertion keyword. Each IF/ELSE must be separated by a new line.

E.g.,

	CASE1

		NAME “Conditions Apply”

		IF variable1 == “shorthand”

			INFO “You are lazy and smart”

		ELSE IF variable2 EQUALS “longhand”

			INFO “You are hardworking”

		ELSE

			INFO “You are hardly working”

REPEAT <n> TIMES/END

Loops can be made using this simple construct. This construct also makes the special variable INDEX available inside the loop to find the current iteration count.

E.g.,

	CASE1

		NAME “A little loopy testcase”

		REPEAT 5 TIMES

			INFO “Looped the hoop ”+INDEX+” times”

		END

COMMENT

A simple one line construct. Anything written in this line will be ignored in execution.

E.g.,

	CASE1

	NAME “Live commentary”

	STEP “The first step”

	COMMENT I am in the first step

	#Of course I can be abbreviated too!

[bookmark: _GoBack]

e. [bookmark: _Toc338710926]Conjunction

This is a special single keyword (AND) that allows combining multiple OpenSpeak statements in a single statement in specific cases.

Following are the statements that can be combined.

· Any operation and an ASSERT

· Any operations and a STORE

E.g.,

	CASE1

	NAME “Conjunction”

	STEP “Let’s do something and assert ourselves”

	ON flowvisor1 DO get_slice USING flowvisor1.slice_config AND ASSERT LAST_RESULT == main.TRUE

	STEP “Let’s do something and store it for a rainy day”

	ON mininet1 DO start_emulation AND STORE LAST_RESPONSE IN emulation_response

	COMMENT “Conjunction and abbreviation don’t go together”

f. [bookmark: _Toc338710927]Logging

Logging is done by means of simply providing the level of the message in caps followed by the message itself.

E.g.,

	CASE1

	NAME “Lots of logs”

	STEP “All good”

	INFO “Nothing to worry”

	STEP “A little deeper”

	DEBUG “You can dump an object at this level”

	STEP “Something is rotten in the state of Denmark”

	WARN “You better keep a close eye on me”

	STEP “Not looking good”

	ERROR “Houston we have a problem ” + mininet1.error

	STEP “KABOOM”

	CRITICAL “End of the road”

4. [bookmark: _Toc338710928]References

· OFAutomation SRS v1.0 by C S Sriram

_1412401930.ppt

FlowVisor Testing Project

for Multiple Controllers & Switches

December 2nd, 2011

*

Goal and Steps of the Test

Goal 1) Interoperability test through FV

Goal 2) FV's evaluation with multiple controllers and SWs

SW1

SW2

SW3

cntr1

cntr2

SW1

SW2

SW3

cntr1

FV

cntr2

FV

Step 1) 1 SW - FV(1 slice) - 1 controller

Step 2) Multiple SWs - FV(1 slice) - 1 controller

cntr2

FV

SW1

SW2

SW3

cntr1

FV

FV

Step 3) Multiple SWs - FV(multiple slices) - multiple controllers

		protocol-base slices

		topology-base slices

		mixture of protocol- and topology-base slices

“Test with controller1 and SW3”

“Test with controller1 and SW1&2&3”

“Test with controller2 and SW1&2&3”

“Test with controller1 and SW2”

“Test with controller1 and SW1”

Success!

*

OF switches

 OF controllers

Success/Failure Criteria of Test

Criteria is based on both (1) data packets on datapath and (2) OF messages on control path, because connectivity and flowspace isolation is the key for end-to-end communication and OF has also control-path-related messages (such as Port_Status)

FlowVisor

rule(s)

clients (packet generator + receiver)

(1) check end-to-end connectivity

 and unexpected packet leakage

based on rules (“dpTester”)

(2) check input/output OF messages which

may be assumed by rules (“cpTester”)

: packet(data)

: OF message

*

Logical View

SW(...)

SW(NEC)

SW(HP)

SW(pronto)

SW(OVS)

SW(...)

FlowVisor

SW(...)

SW(NEC)

SW(HP)

SW (pronto)

SW(OVS)

SW(...)

SW (...)

SW (NEC)

SW (HP)

SW (OVS)

SW (...)

controller (beacon)

controller (NEC)

controller (NOX)

controller (...)

rule/slice

Configurable 1)

 Connections w/ SWs/controllers

Configurable 2)

 Effective rules/slices

Avoid physical rewiring during test executions → automated test

client

client

client

client

client

client

client

client

*

Automated Test Tool

Choose topology and testing scenario & applications

Configure switches, controllers, and FlowVisor based on a testing scenario

Execute evaluation applications (ping, iperf, …)

Capture all packets (OF messages)

Retrieve syslogs from servers

Check;

message behavior is same as is assumed

there are no warnings in syslogs

*

Physical View

test server

FV, controllers on VM

controllers

clients

secchan

secchan

secchan

switches

controllers

*

Physical View + Testing Tools

test server (dpTester, cpTester, configurator)

FV, controllers on VM

switches

clients

(mininet)

controllers

controllers

secchan

secchan

secchan

packet generator + tcpdump

tcpdump

iptables + tcpdump

legacy switch

*

dpTester (test of data path)

test server (dpTester & configurator)

FV

clients

controllers

secchan

secchan

secchan

Configurator installs rule to FV and set up network topology (and SWs/controllers configs).

Choose a packet sender and one or more receiver(s), depending on test scenario.

Packet generator is executed on the sender host.

Capture all packets with tcpdump on all client hosts.

dpTester gathers the captured packets and examines them whether receiver received same packets as sender has sent and there is no leakage to others.

packet generator

receiver

pkt1

pkt2

pkt3

To: 5.6.7.8

rule(s)

rule(s)

pkt1

pkt2

pkt3

pkt1

pkt2

pkt3

==

Capture all packets on all hosts

IP: 1.2.3.4

IP: 5.6.7.8

on 1.2.3.4

on 5.6.7.8

*

dpTest script

Example

Send: 3 packets (or 4000 bytes data)

from node 1:1.2.3.4 to node 5:5.6.7.8

packet payloads are (P_a, P_b, P_c)

Comparison: 3 packets output on node 1 & input to node 5

IPsrc:1.2.3.4 && IPdst:5.6.7.8 && payload:(P_a, P_b, P_c)

Confirm: No packet input on node [2 3 4 6 7]

IPsrc:1.2.3.4 or IPdst:5.6.7.8

Note

There are some comparison levels:

Packet by packet, Payload only, Stream, etc…

*

configurator

Example

Install rule(s) to FlowVisor

“all(packets) to controller_1”

Only SW1 connects to FlowVisor (iptables config)

white list

“INPUT DROP”

“OUTPUT DROP”

“FORWARD DROP”

“INPUT –p tcp –s switchA –d FVhost --dport 6633 –j ACCEPT”

“OUTPUT –p tcp –s FVhost --sport 6633 –d switchA –j ACCEPT”

above list means packets from SW[2 3 4 …] will be dropped

FlowVisor then connects to controller1

*

cpTester (test of control path)

test server (dpTester & configurator)

FV

clients

controllers

secchan

secchan

secchan

Configurator installs rule to FV and set up network topology (and SWs/controllers configs).

Choose a packet sender and one or more receiver(s), depending on test scenario.

Packet generator is executed on the sender host.

Capture all OF messages with tcpdump on the FV host.

cpTester gathers the captured messages and examines their protocol and correctness based on the current rule(s).

packet generator

receiver

pkt1

To: 5.6.7.8

rule(s)

rule(s)

pktin

flowmod

pktin

flowmod

==

Capture all OF messages

IP: 1.2.3.4

IP: 5.6.7.8

pktin

flowmod

pktin

flowmod

pkt1

pktin

flowmod

pkt1

pktin

flowmod

*

Challenges

Need to clarify “What kind of test should be enough?”

There can be tons of millions of combinations in FV rules

Indeed, there is no collect answer. We should define one

Impossible to test all functions (due to programability of SDN)

If failure occurs, who should be suspected at first? (SW? controller? or FV?)

Decide physical wiring for testing many topology w/o rewiring

Using only VSI mode?

*

